Acknowledgements:

We would like to thank Deena Hallaji from the Betty and Guy Beatty Center for Integrated Research for her excellent work organizing this annual report as well as Anne Doyle from Inova’s Marketing Communications/Photography who did an outstanding job providing photos.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MESSAGE FROM THE EXECUTIVE DIRECTOR OF RESEARCH, INOVA HEALTH SYSTEM</td>
</tr>
<tr>
<td>CENTER FOR INTEGRATED RESEARCH</td>
</tr>
<tr>
<td>RESEARCH INFRASTRUCTURE (HUB & SPOKE MODEL)</td>
</tr>
<tr>
<td>INOVA RESEARCH CENTER (IRC)</td>
</tr>
<tr>
<td>INOVA RESEARCH FUNDING</td>
</tr>
<tr>
<td>ADDITIONAL RESEARCH SUPPORT</td>
</tr>
<tr>
<td>OUTCOMES RESEARCH PROGRAM</td>
</tr>
<tr>
<td>TRANSLATIONAL RESEARCH INSTITUTE (TRI)</td>
</tr>
<tr>
<td>RESEARCH SPOKES</td>
</tr>
<tr>
<td>CANCER CENTER RESEARCH</td>
</tr>
<tr>
<td>CENTER FOR LIVER DISEASE</td>
</tr>
<tr>
<td>GYNECOLOGIC ONCOLOGY RESEARCH</td>
</tr>
<tr>
<td>INOVA HEART AND VASCULAR INSTITUTE — ADVANCED LUNG DISEASE</td>
</tr>
<tr>
<td>INOVA HEART AND VASCULAR INSTITUTE — CARDIOLOGY RESEARCH</td>
</tr>
<tr>
<td>INOVA HEART AND VASCULAR INSTITUTE — CARDIAC SURGERY RESEARCH</td>
</tr>
<tr>
<td>INTERVENTIONAL RADIOLOGY RESEARCH</td>
</tr>
<tr>
<td>NEUROSCIENCE RESEARCH</td>
</tr>
<tr>
<td>NURSING RESEARCH</td>
</tr>
<tr>
<td>ORTHOPAEDICS DEPARTMENT RESEARCH</td>
</tr>
<tr>
<td>ORTHOPAEDICS RESEARCH: ANDERSON ORTHOPAEDIC RESEARCH INSTITUTE</td>
</tr>
<tr>
<td>PEDIATRIC RESEARCH</td>
</tr>
<tr>
<td>PSYCHIATRY RESEARCH</td>
</tr>
<tr>
<td>TRAUMA RESEARCH</td>
</tr>
<tr>
<td>RESEARCH PRESENTATIONS OF INOVA HEALTH SYSTEM</td>
</tr>
</tbody>
</table>
In 2009, research remained an important priority at Inova Health System. Several new initiatives, undertaken throughout the year, strengthened our research infrastructure at the Betty and Guy Beatty Center for Integrated Research, Inova Health System. Researchers investigating cancer, liver disease, obesity, advanced lung disease, atrial fibrillation and neurosciences continued to show tremendous academic productivity as a result of the progression of each research team, their collaborative efforts, and the institutional support provided to the teams.

Additionally, Inova’s investigators and leadership demonstrated increased interest in translational research and personalized medicine. These efforts are being undertaken through collaborations with partners such as George Mason University, Ignite Institute, and other biopharmaceutical companies. Initiatives of this kind promote our research goals for developing cutting-edge, investigator-initiated research protocols, a research biorepository, and the implementation of personalized medicine protocols. These combined efforts are focused on our vision of becoming one of the best healthcare systems in the world.

Finally, over the past year, Inova has implemented several mechanisms that directly support and encourage research throughout the system. For example, in addition to supporting the office of research and each of our research teams, Inova provided research funding to encourage innovative and patient-centered research projects. Inova’s faculty grants, research seed grants, and summer student grants have been excellent venues for providing start up funds for promising faculty and innovative projects. Additionally, in 2009, Inova’s leadership established a new “George Mason-Inova Life Sciences Fund” to encourage collaborations among investigators from the two institutions. These research funds have engendered enthusiasm for original and productive research among our faculty and students.

Finally, to further strengthen our research infrastructure, Inova has elicited recommendations from Deloitte consulting. Their input will help optimize the research infrastructure within our research hub as well as our strategically-focused research programs. By coupling these research efforts with Inova’s plans for developing robust electronic health records, information technology and informatics infrastructure our investigators will have an excellent opportunity to carry out projects involving health services research and translational research concerning several important chronic diseases. I am confident that each year we will grow closer to the full realization of a solid research infrastructure and our vision of becoming one of the best health care systems in the world.

Zobair M. Younossi, MD, MPH, FACP, FACG, AGAF
Executive Director of Research, Inova Health System
Professor of Medicine, Virginia Commonwealth University, Inova Campus
Affiliate Professor of Biomedical Sciences, George Mason University
Since the opening of the Betty and Guy Beatty Center for Integrated Research at Inova Health System in 2008, the center has focused on providing an integrated and efficient research infrastructure for our investigators. The center was designed to bring together the research administrative offices with those units involved in the implementation of research. The administrative offices oversees the business aspects of research as well as the administrative offices of the Institutional Review Board (IRB), Technology Transfer, Research Contracting, and Research Training and Education.

Additionally, the center houses the Translational Research Institute (TRI) with its laboratories, research bio-specimen banking facility, and outpatient clinical trial area. The TRI labs have the capacity to utilize gene expression technologies, ELISA-based protein assays, as well as the upcoming cell culture facility. These technologies are used extensively for biomarker validation as well as implementation of novel clinical trial and personalized medicine protocols. These labs are jointly staffed by Inova and collaborators from George Mason University (GMU).

The research bio-specimen banking facility of TRI is specifically designed to house twenty -80°C freezers in a temperature controlled environment with backup electricity and a sophisticated electronic freezer temperature monitoring system. Currently, over 19,000 specimens from Center for Liver Diseases patients are stored in six freezers. Other research teams who have purchased freezers to accommodate their specimen needs include the Advanced Lung program, Cardiac Surgery program, Cancer program, and the Neurosciences/Trauma program. All freezers are centrally monitored to assure that research specimens are stored at optimal temperatures to provide important quality control for specimen integrity.

The third component of the Center for Integrated Research (CIR) is the Outcomes Research Program with its functional assessment laboratory. This laboratory is designed to implement research protocols that assess activity of daily living and other functional assessment measures of patients with chronic diseases.

Since November of 2008, the Betty and Guy Beatty Center for Integrated Research at Inova Health System has been fully operational, providing cutting-edge, patient-oriented research benefiting Inova’s patients and investigators. The center will continue to grow and play a pivotal role in supporting Inova’s research mission and vision to become the best healthcare system in the world.
The Center for Integrated Research serves as the hub for the decentralized research conducted across Inova Health System. The Research Hub supports all Research Spokes (Research Teams) and researchers from Inova Health System. The administrative component of the Center for Integrated Research or Inova Research Center (IRC) consists of the Business Office, IRB Administrative Office, Research Training and Education Office, Research Quality Improvement Team, Technology Transfer Desk and Contracting, Database and Support, as well as Epidemiology and Biostatistics Office. The IRC team of professionals provide summaries of the activities for each of the IRC offices to highlight the continuous support offered by the IRC team to our investigators. The IRC is managed by Gity N. Porjosh, MPH, and supported by Terry Castro-Perez, Sr. Administrative Assistant.

RESEARCH BUSINESS OFFICE
In 2009, the Business Office continued its support to the research spokes with various financial matters required to conduct research studies. Many of these routine activities concerned budgeting, financial reporting, processing research invoices, and developing study matrices. Special attention has been given to research billing compliance this year. This effort was overseen in conjunction with the Compliance Department to develop a process that flags research bills within the financial system. Furthermore, the review process ensures bills are appropriately assigned to payers. The process integrates efforts of the research spokes, financial systems, and business office to effectively review and flag research financial records.

The Business Office continuously strives to streamline its processes and operations to efficiently and effectively provide support to the research spokes. On a monthly basis, program managers review financial results, which are prepared by the Business Office and include year-to-date and cumulative statistics. Additionally, matrix reviews are conducted prior to the start of research studies to ensure quality data entry for capturing research activities impacting study specific revenue and expenses. Variance reporting was introduced to the spokes to better track the expenses of the studies and the administrative cost centers.

In 2009, the Business Office worked with Inova Fairfax Hospital leadership to redesign the pillar report to include both budget and actual statistics for comparison by spoke program manager and administrators. Also, the Business Office has worked with Corporate Accounting to enhance the project accounting reports from Oracle Discoverer.

The Business Office team consists of Candy Conway, MBA, and Camilo Naval, MMBM. They oversee routine activities and support spokes’ research operations by also providing guidance regarding the purchase of capital equipment and other business functions.

INSTITUTIONAL REVIEW BOARD (IRB) ADMINISTRATIVE OFFICE
The goal of the Institutional Review Board is to ensure compliance with the mandates of the Federal Office of Human Research Protection. Inova provides research investigators with two mechanisms to review and support research protocols throughout the Inova Health System: two local Institutional Review Boards (IRB) and the centralized Western IRB. The local boards (Groups A & B) are independent and supported by the IRB Administrative Office. The Western IRB is supported by a Program Manager liaison at Inova.
In 2009, IRB Group A had 49 full board reviewed studies, 42 closed to accrual, and 64 expedited reviews. IRB Group B had 57 full board reviewed studies, 50 closed to accrual, and 60 expedited reviews. NCI CIRB had 39 open studies with Inova PI, and WIRB had 78 open studies for a total of 439 nonexempt open studies for 2009.

In 2009, the (IRB) had 106 open studies requiring approval and renewal by a full board. An additional 163 assigned studies were reviewed and renewed on an expedited basis. The IRB manager who is a member of both Group A and Group B boards completes expedited reviews. In addition, while the exempt studies do not require IRB oversight, they must be reviewed for an initial determination of the “exempt” status. There were 82 exempt studies reviewed by the IRB manager and staff in 2009.

In addition to these studies, Inova investigators participate in 39 federally sponsored oncology studies that have oversight provided by the NCI Central IRB (CIRB). A designated IRB member (usually the IRB chair) performs an initial review of each study. All consents as well as an amendment or renewal for these studies are initially reviewed by the IRB manager and staff to assure the Inova required consent elements are met.

In 2009, 174 new studies were reviewed by the Inova IRB. About 15% of submitted studies are deemed more than minimal risk and require full IRB approval. Approximately half of the studies reviewed by the IRB involve human subjects, but they are determined to be exempt from IRB approval and exemption certificates are issued. Figure 1 shows trends in the new research submissions over a 3-year period. As indicated, submissions have increased as research becomes more entrenched in the clinical programs across the Inova Health System.

Because investigators and research personnel are required to have human subject research training, Inova Health System began to offer the web-based Collaborative IRB Training Initiative (CITI) in 2007 as an alternative. The Executive IRB Committee has decided that effective December 31, 2009, all Inova researchers and research personnel involved in human subjects research are required to complete the CITI human subject research training program before receiving approval for any research protocol. Certification is effective for three years. Since Inova began this process, 642 human subject research training certificates have been completed, 445 of these certificates were completed in 2009.

The IRB Administrative Office ensured all policies were up-to-date and maintained per regulations as well as the forms used by researchers for submission to the board. A number of federal-wide assurances were established with non Inova employed physicians conducting research at Inova Health System.

The IRB Administrative office consists of Laura Miller, MHSA, CLP (IRB Manager), Suzanne May, MPH, CLP, Kathy Ankrah, BS, CHEP, and BJ Pulsipher, RN (part-time). Michael Sheridan is the chairman of local boards.

WESTERN INSTITUTIONAL REVIEW BOARD (WIRB)
The Western Institutional Review Board (WIRB) serves as the centralized commercial review option for research investigators. Funded industry-sponsored studies are reviewed through WIRB with an Inova Program Manager serving as the program liaison to Inova investigators.

In 2009, approximately 78 studies were opened with the WIRB. The local IRB continues to maintain records of all WIRB studies, as well as changes in the research protocol and adverse events. This year, WIRB adjusted their fee schedule and revised submission forms to reflect process changes for reviewing multi-center studies. All Inova study staff who work with WIRB were informed of these changes via email, the Spoken News, and IRB webpage updates. An internal tracking document is continually updated to monitor questions from Inova and study sponsors, as well as the responses received from the WIRB.
This tracking system is used to update the frequently asked questions (FAQ) file for research coordinators. The FAQ is currently available on the IRC share drive and the IRC webpage, to assist coordinators in preparing WIRB submissions and responding to queries from sponsors.

Post Approval Monitoring
In July 2009, the Executive IRB Committee implemented a new IRB post approval monitoring program. The goal of this program is to enhance the protection of research subjects and improve the quality of research data. To accomplish this goal, the IRB administrative staff will send a post approval monitoring form to the principal investigator and study staff three months after the approval of a new submission.

The form includes questions about the consent process and any changes to the research that would require IRB review and approval. If, based on the responses we receive, the IRB administrative staff decides that certain study staff needs more assistance or training, the IRB/IRC staff will provide further guidance to the Investigator or study team. This program began with studies approved in September 2009.

EXECUTIVE IRB COMMITTEE
The Executive IRB Committee performs an integral function in the oversight of research at Inova Health System. The committee is charged with ensuring research policies are aligned with federal, state, and local regulations. Additionally, the committee reviews conflict of interest and research misconduct issues impacting researchers at Inova. The committee meets on a bi-monthly basis and is comprised of 14 professionals representing key areas for research.

RESEARCH QUALITY IMPROVEMENT TEAM (RQIT)
The goal of the Research Quality Improvement Team (RQIT) is to provide objective quality reviews of research studies conducted across Inova to ensure that all regulatory and clinical policies of the IRC and IRB are followed. Feedback on improvement opportunities is provided to the investigator with recommendations for implementation and to ensure studies comply with all appropriate regulations. Studies are randomly selected by the RQIT team and reviewed on a monthly basis. Additionally, investigators and spoke leaders may request a not-for-cause review of their studies.

The Research Quality Improvement Team (RQIT) completed eight reviews in 2009. This year the scope of reviewed studies grew to include studies taking place outside Inova Health System Fairfax Campus. Studies now come up for review by random selection of an Investigator. Studies reviewed in 2009 represented six different spokes.

Each year, a quarterly update is provided to the IRB Executive Committee, briefly summarizing the most recent reviews and any relevant findings.

Members of RQIT consist of Susan May, MPH, CLP (IRB); Anuja Mathai, MA, JD (TTD and Contracts Office); and Rose Gorospe, RN, MSN (Research Education Office).

RESEARCH TRAINING AND EDUCATION OFFICE
The primary objective of the IRC Education Office is to provide all research programs and investigators with educational opportunities related to the conduct of research at Inova Health System. In 2009, the Education Office ended a very busy year by successfully delivering educational events and programs to researchers and those interested in learning about research throughout Inova Health System. Six research coordinators from several spokes participated in the clinical research coordinator (CRC) orientation program, which incorporates theory and practical sessions guiding coordinators on how to conduct research at Inova Health System. A clinical research staff competency tool was developed and administered to these coordinators upon completion of the program.

Quarterly education sessions were developed on the basis of feedback received from the 2nd Annual Research Training Day evaluations and administered at the Inova Fairfax Hospital campus. These sessions were well attended and offered participants the opportunity to take part in the discussions.

The 3rd Annual Research Training Day was successfully developed and delivered in conjunction with the continuing medical education (CME) Grand Rounds; Dr. Christine Grady, Acting Chief of the NIH Clinical Center’s Bioethics Department, was the Key Note speaker. Over 250 attendees participated in the program including clinicians, research teams, students, residents, and other professionals.

The Education Office represented the IRC/IRB at the Annual Inova Health System Nursing Research Workshop and continued to serve on various Nursing Research boards and committees.

Administratively, the Education Office continued to develop, update, and maintain IRC standard operating procedures (SOPs), including guidance for billing research compliance, an important initiative for research in 2009. Additionally, the bi-monthly creation and dissemination of the CRC newsletter, “The Spoken News” was managed in collaboration with the IRC Database Administrator.

The Education Office team consists of Rose Gorospe, RN, MSN and Kathy Ankrah, CHEP.
INoVA RESEARCH CENTER (IRC)

DATABASE ADMINISTRATION AND SUPPORT OFFICE
The IRC Support Office, which is responsible for the research approval process, IRC database, and maintenance of the IRC websites, focused on improving the studies listing database to allow research spokes access to their specific studies section. It offers spokes the opportunity to update the status of their studies in real time, providing better reporting.

The office processed 149 research applications in 2009, a higher volume relative to those processed in 2008, primarily due to an increased number of Executive Director Grants, and the Inova/GMU grant initiative.

The IRC webpage on Inova.net has been maintained with up-to-date information. Updates were based on feedback from the research spokes during focus group meetings. The IRC webpage on Inova.org was also revised allowing, the Center for Integrated Research (CIR) to serve as the overarching page for the site.

Administratively, the IRC Support Office developed reports as needed for senior leadership and provided oversight and maintenance of the IRC central lab.

The IRC Support Office consists of Mike Roma, MA and Terry Castro-Perez.

TECHNOLOGY TRANSFER DESK (TTD) AND CONTRACTS DESK
The primary roles of Technology Transfer Desk of the Inova Research Center are in research contract management, intellectual property management, and policy development. Additionally, TTD is involved in research quality improvement, compliance assurance, and other research process improvement initiatives.

Contracts
The desk has assisted in negotiating 13 Confidentiality Disclosure Agreements, 27 Clinical Trial Agreements, and 14 Amendments in addition to Data Use Agreements, Material Transfer Agreements, and other research related agreements.

Intellectual Property
The desk has worked with outside legal counsel and outside collaborators to file two additional patents, which brings the patent portfolio to six filings. The desk has worked with Inova legal counsel in finalizing the Intellectual Property Policy and is now developing a procedure to handle revenues generated from Intellectual Property.

Research Biospecimen Policy
The desk has developed an Inova Research Center Bio-specimen Policy that will apply to all studies taking place across Inova Health System, with a bio-specimen component.

Federal Collaborations
In conjunction with the Grants Management Office (GMO) and Corporate Accounting (CA), the desk is working on a system for better managing grants and ensuring all federal regulatory requirements are met in a timely manner. The desk has compiled a spreadsheet of all the studies that involve federal funds or collaborations. This sheet will be used by GMO and CA to ensure Inova’s reporting requirements to federal entities are also met.

Academic Productivity Index (API)
Estimating academic productivity is a challenging yet increasingly important aspect of academic development. In 2009, the CIR established a committee (Zobair Younossi, MD, MPH; Michael Sheridan, ScD; Anuja Mathai, JD; and Gity Porjosh, MPH) to develop the Academic Productivity Index. Most of the work was dedicated by Anuja Mathai who not only researched the model but also worked closely with developers to establish the tool. The formula is currently being validated and will be distributed to the Inova research community for comments and eventual use in 2010.

The TTD and Contracts Office are managed by Anuja Mathai, MA, JD.

EPIDEMIOLOGY AND BIOSTATISTICS OFFICE
The activities of the IRC’s Epidemiology and Biostatistics Office are primarily carried out by Michael J. Sheridan, ScD, FACE. Dr. Sheridan’s major areas of effort include: 1) Design, evaluation, publication, and presentation of clinical research and quality studies; 2) Participation on Inova-wide committees governing the safety and rights of human subjects within Inova Health System; and 3) Teaching evidence-based principles and practices to Inova physicians-in-training (medical students, residents, and fellows). In 2009, Dr. Sheridan collaborated with IHS physicians, nurses, and managers in approximately 112 clinical and quality studies across 19 departments, producing six publications in peer-reviewed journals and 12 abstracts and or presentations for national meetings of professional societies. In addition, he provided statistical expertise for the Novartis Pharmaceuticals & Inova Health Care Services Grant awarded to Kirsten Edmiston, MD.

Dr. Sheridan also served as Chair of the Inova IRB and also as a member of the Inova IRB Executive Committee.
In this capacity, he was responsible for providing ethical oversight to approximately 174 sponsored and unsponsored clinical trials involving human subjects within the Inova Health System, and in creating/revising the policies which govern all research activities within Inova Health System.

Approximately 12-15 times each month, Dr. Sheridan supervised ACGME evidence-based teaching activities for medical students, residents and fellows in the departments of medicine, obstetrics-gynecology, orthopedics, pediatrics, psychiatry, and surgery. Also, he served as Director of the CME Program for the Inova Fairfax Hospital, Department of Psychiatry, overseeing approximately 48 Category 1 AMA events. The following are the professional meetings, publications, abstracts and presentations by Dr. Sheridan, in conjunction with other investigators.

BOOKS, BOOK CHAPTERS, AND JOURNAL ARTICLES

ABSTRACTS AND PRESENTATIONS TO NATIONAL MEETINGS

LECTURES AND FACULTY PRESENTATIONS TO NATIONAL OR INTERNATIONAL MEETINGS
1. Society for Epidemiologic Research, June 23-26, 2009, Anaheim, CA
3. American Public Health Association, November 7-11, 2009, Philadelphia, PA
Over the past three years, Inova’s senior leadership has provided two important funding mechanisms to promote and encourage original, patient-oriented research carried out by Inova investigators. The following paragraphs summarize the two mechanisms of funding.

INOVA HEALTH SYSTEM’S RESEARCH GRANTS

In 2006, Inova’s senior leadership established a designated fund to provide funding for innovative and original research throughout the system. These grants include Faculty Research Grants, Seed Research Grant, and Summer Student Research Grants. Since the establishment of the funding mechanism, a total of 18 faculty grants, 26 seed grants and 13 summer student grants have been awarded.

Accordingly, in 2009, Inova awarded 27 additional research Grants to investigators in Cardiac Surgery, Pediatrics, Trauma, Orthopaedics, Women’s Health, and Department of Medicine programs as well as Outcomes and Translational Research programs (14 seed grants, 8 faculty grants, and 5 student grants) for a total of $357,005.00.

GEORGE MASON UNIVERSITY-INOVA HEALTH SYSTEM LIFE SCIENCES FUND

For a decade, researchers at Inova Health System and George Mason University have been collaborating on groundbreaking research in the areas of obesity, liver disease, cancer, and heart and lung diseases. These collaborations have led to important discoveries and the development of new biomarkers as well as personalized medicine protocols. In 2009, Inova Health System provided $1 million (distributed over three years) to George Mason University to create George Mason University-Inova Health System Life Sciences Fund. This fund was established to stimulate and enhance collaborative research in the life sciences including chronic disease management, obesity, heart disease, stroke, end of life provisions, genomics, proteomics, ethical issues, and patient experience.

In July of 2009, several Inova-George Mason investigators were jointly awarded these newly established grants. The following is a summary of these grants and the award recipients:

1. **Developing Procedures to Reduce Medical Anatomy and Surgery System.**
 Investigators:
 Deborah Boehm-Davis – GMU
 Nicole Werner – GMU
 Maureen Burke – Inova (Risk Management)
 Award Amount: $40,000.00

2. **The development of VKASS: A Virtual Knee Anatomy and Surgery System**
 Investigators:
 Jim Chen – GMU
 Jihui Li – Inova – Orthopaedics
 Mark Theiss – Inova – Orthopaedics
 Craig Cheifetz – Inova – Department of Medicine
 Frank Krueger – GMU
 Award Amount: $40,000.00

3. **Variation at the Oxytocin Receptor Gene Influences Responsivity of Neural Circuitry for Interpersonal Trust: Developing Molecular Markers for Neuropsychiatric Disorders**
 Investigators:
 Kevin McCabe – GMU
 Frank Krueger – GMU
 Robert Lipsky – Inova – Neurosciences
 Award Amount: $40,000.00

4. **Antimicrobial Peptides in Idiopathic Pulmonary Fibrosis**
 Investigators:
 Monique Van Hoek – GMU
 Shahzad Ahmad – Inova – Lung Transplant
 Award Amount: $40,000.00

5. **Novel Methods for Sonographic Evaluation of Blunt Cervical Vascular Injuries**
 Investigators:
 Siddhartha Sikdar – GMU
 Margaret Griffen – Inova – Trauma
 Anne Rizzo – Inova – Trauma
 Tayseer Al-Daghlas – Inova-Trauma
 Christopher Michetti – Inova – Trauma
 Linda Robinson – Inova – Trauma
 Award Amount: $20,000.00

6. **The Perioperative Nurse’s Role in Error Recovery: From Assessing Characteristics of Near Errors to Developing Interventions for Improving Quality of Surgical Care.**
 Investigators:
 Tony Yang – GMU
 Linda Henry – Inova – Cardiovascular Surgery
 Award Amount: $20,000.00

7. **Muscle Oxygenation and Cardiorespiratory Function in Women with SLE: Exercise Responses and Training Adaptations**
 Investigators:
 Randall Keyser – GMU
 Jack Wilkenfeld – Inova – Rheumatology
 Award Amount: $10,000.00
8. Novel Risk Factors and Management Strategies for Transient Ischemic Attack (TIA) and Stroke: the Inova Fairfax Stroke Database
 Investigators:
 Panagiota Kitsantas – GMU
 Richard Benson – Inova – Neuroscience
 $10,000.00

9. The Socio-geographic Determinants of Patients with Chronic Liver Disease
 Investigators:
 Timothy Leslie – GMU
 Lisa Pawloski – GMU
 Jillian Kallman – Inova – Outcomes Research
 Yun Fang – Inova – Outcomes Research
 $10,000.00

10. Neuroanatomical Correlates and Biomarkers of Extremely Low Birth Weight Outcomes at 18 Months Corrected Age.
 Investigators:
 Jessica Lin – GMU
 Margot Ahronovich – Inova – Neonatology
 Fern Litman – Inova – Neonatology
 Ida Sue Baron – Pediatrics
 Oral Alpan – Inova – Pediatrics
 Kristine Erickson – Inova - Pediatrics
 Robin Baker – Inova - Pediatrics
 $10,000.00

11. Quantify the Contribution of Nursing to Medical Surgical Patient Care Systems at Inova Health System Hospitals.
 Investigators:
 P.J. Maddox – GMU
 Patricia Conway-Morana – Inova – Chief Nurse Executive
 $10,000.00

12. Improving Patient Care through Understanding the Nursing Work place
 Investigators:
 Margaret Mahon – GMU
 Anne Nicotera – GMU
 Xiaoquan Zhao - GMU
 Patricia Conway-Morana – Inova – Chief Nurse Executive
 $10,000.00

13. Knowledge-based Computational Models of Drug Resistance in Patients with HIV
 Investigators:
 Iosif Vaisman – GMU
 Majid Masso – GMU
 David Wheeler – Inova
 Donald Poretz – Inova – Infectious Disease
 Award Amount:$10,000.00

 Investigator:
 Melinda Villagran – GMU
 DeWitt Webster – GMU
 Paul Clark – GMU
 Nicholas Robert – Inova – Hematology/Oncology
 $10,000.00

15. Oncology Patients’ Trust in Physicians and Health Outcomes
 Investigators:
 Qiuping Zhou – GMU
 Kirsten Edmiston-Inova
 $10,000.00

16. Analysis of Pedestrian and Bicycle Motor Vehicle Crashes in the Fairfax County Region
 Investigators:
 Edmund Zolnik - GMU
 David Wong -GMU
 Anne Rizzo-Inova
 Linda Robinson-Inova
 $10,000.00
GRANTS MANAGEMENT OFFICE
Inova’s Grants Management Office (GMO) pursues funding from federal, state, local, and private entities to increase financial support for existing programs and facilitate the development of new initiatives consistent with advancing Inova’s mission and organizational priorities. Inova’s Grants Management Office and Inova’s Research Center are working collaboratively to support innovative researchers in their pursuit of funding to improve the lives of patients and bring research results from the bench to the bedside. In addition to supporting busy researchers and investigators, the GMO also coordinates and assists in developing proposals for community programs and initiatives by: identifying grant opportunities, streamlining the proposal process, providing resources/expertise to effectively prepare proposals, and providing guidance in managing grant funds and complying with grantor requirements. For 2009, GMO submitted 21 research proposals and community grants for a total of $21,824,943. Out of that: $ 8,185,365 was awarded in community grants, $5,924,595 is pending, and $ 7,714,983 was not awarded. For more information about this office and the services it provides please contact Lynn Evans-Riester, Director at Lynn.Evans-Riester@inova.org.

MEDICAL INNOVATION & TRANSFORMATION INSTITUTE (MITI):
The mission of Inova’s Medical Innovation & Transformation Institute, since its establishment in 2007, has been to acquire or invent best practices in health care for the Inova process of continuous improvement. Led by Dr. Terry Sharrer, Executive Director, MITI was involved in three major projects in 2009: collaborating with the newly founded Ignite Institute for Individualized Health; exploring research, education, and business opportunities with Soochow University in Suzhou, China, and initiating a broader telemedicine program.

MITI received a grant from the Claude Moore Charitable Foundation to pursue several interests common to the Inova Health System and the three affiliated hospitals of Soochow University in Suzhou, about sixty miles north of Shanghai. An Inova group visited there in July, and the first of two groups coming from China arrived in Falls Church in early December. A larger delegation will follow in March 2010. At present, both sides are considering proposals for a concept called “Sinova.”

Telemedicine has potential to offer more effective, efficient, and accessible healthcare, especially for elderly patients with chronic diseases. Thus, “Automated Wellness: Enabling Universal Access to Healthcare” was the title of a medical automation conference that MITI facilitated in early December. Wellness monitoring via wearable, implantable, or ingestible devices; step down e-care for discharged patients at home, and electronic microclinics are among the telemedicine applications MITI will explore for Inova.
The mission of the Outcomes Research Program (ORP) is to support Inova researchers in their efforts to develop and select appropriate outcome measures. The ORP has been established as a collaboration between Inova Health System and George Mason University. The program has completed its first year of operation in the new facility for the Center for Integrated Research and has set the course for excellence in providing support for researchers and investigators interested in measuring human performance, including real time functional activities, and patients’ perceptions of their abilities and level of satisfaction.

This year ORP has broadened its range of outcomes assessment, expertise, and resources for the wider Inova research community. This is in addition to published manuscripts, a collaborative book chapter, and approved research grants, presentations at international meetings, and training the next generation of researchers. The ORP staff has also established collaborative and supportive relationships with a variety of investigators from different disciplines. These include the pediatric research group, members of Inova physical therapy and psychiatric staff, the rheumatology section, and the cardiac rehabilitation program. ORP is poised to advance research throughout the Inova Health System by using existing and future collaborations. ORP operates in a state-of-the-art functional assessment lab with equipment designed to measure aerobic capacity using gas exchange methods, ambulation patterns using in-shoe pressure measures to capture temporal and spatial data, and activities of daily living (ADL) in a simulated kitchen environment. The ability to return to the community depends upon a patient’s ability to function. “Function” is the endpoint of biological organs and systems working in concert to produce purposeful activity, which is often referred to as “activities of daily living” (ADL). An individual’s capacity for ADL is called “functional independence.” This is a major concern for patients who are about to go home from the hospital, and those experiencing a change in mental or physical health status. Function can be improved through environmental modification and assistance with adaptive technology and personal assistants. It is important to learn about individual levels of function with appropriate research tools.

The Functional Assessment Laboratory is designed to carry out research projects that measure an individual’s ability to function safely in a simulated living environment. This laboratory is designed to assess mental processing, neuromusculoskeletal, and cardiorespiratory performance of patients with chronic diseases, with each component contributing to community living. The evaluation consists of simulating kitchen activities, such as preparing food, washing dishes, loading and unloading the refrigerator. Through the use of metabolic assessment tools and blood-based biomarkers, researchers can determine the process by which these daily activities are performed, how much energy is needed, and whether a patient has the cardio-respiratory reserve to perform ADL. The measurements reliably predict the potential for independence in the community environment.

When abnormalities are observed for specific groups of patients, researchers may devise compensatory treatment plans. In addition to ADL, the Functional Assessment Laboratory studies the performance of patients with a variety of chronic diseases while they exercise by using sophisticated tools to measure cardio-respiratory system, muscle function, balance, and gait. In addition, the center uses questionnaires to assess health-related quality of life. This combined approach allows our investigators to assess several important components of function and quality of life in patients with chronic diseases.

Earlier this year the ORP supported the National Institute of Health (NIH) submission for a Stimulus Grant, coordinating efforts in bariatric surgery from Inova Fair Oaks Hospital and Inova Fairfax Hospital campuses in conjunction with George Mason University. There has been substantial administrative progress during the year.
The program has initiated an effort to develop a paperless process for capturing patient report outcomes. ORP has supported the efforts of CIR in developing a universal, electronic database for all participants in clinical research. ORP has also developed an internal network resource for all Inova research spokes to access information associated with the outcomes tools and resources to facilitate study development.

Naomi Lynn Gerber, MD, internationally renowned physician-investigator, leads the Center as the Medical Director of the Functional Assessment Laboratory. Dr. Gerber is the current director of the Center for the Study of Chronic Illness and Disability at George Mason University and brings her vast knowledge and experience as former Chief of the Rehabilitation Medicine Department at The NIH. In addition to Dr. Gerber, Jillian Kallman, MS, Program Manager of ORP provides a strong administrative base for the program, as well as years of clinical research protocol development, grant and publication submission support, education and training on the inclusion and implementation of outcomes measures in research studies within Inova Health System. Mani Srishord, RN, BSN, Administrative Director, assists and supports all aspects of the clinical operation as well as research projects. Another faculty member from George Mason University, Patrice Winter PT, MS, joined ORP in 2009. Patrice brings the experience of over thirty years as a physical therapist to the team. She is assistant faculty at George Mason University and is in the ORP lab three days per week. This team as well as other collaborators from Inova Health System and George Mason University, continue to be involved in diverse research projects.

Outcomes Research 2009 Protocols:
1. Activity and Nutritional Predictors of Response to Bariatric Surgery
2. Long Term Follow-up of Patients with Non-alcoholic Fatty Liver Disease.
3. The Impact of Age and Other Demographic Factors on the Quality of Life of Patients with Chronic Liver Disease.
4. Fatigue and Health-related Quality of Life (HRQL) Assessment in Blood Donors.
5. Pilot Study to Assess Biologic, Physiologic, Performance Measures and Self-Reports of Fatigue and Health-related Quality of Life (HRQL) in Patients with Non-alcoholic Fatty Liver Disease (NAFLD).
6. A Retrospective Assessment of Prevalence of Hepatitis B (HBV) and Hepatitis C (HCV) in the Asian Community of Northern Virginia.
7. Prevalence of Hepatitis B (HBV) and Hepatitis C (HCV) in the Asian Community of Northern Virginia.
8. Tekscan Grip and Gait Study.
9. Depression in Patients with Chronic Liver Disease.
Although most activities of TRI research occur through collaboration with investigators from other institutions, many important activities are carried out at the Center for Integrated Research (CIR). Several projects are being carried out within our laboratories in this context.

In addition, TRI has the capacity to store large quantities of research specimens in -80°C freezers. The Research Bio-specimen Banking Facility can house 20 minus 80°C freezers. The freezers are kept in a temperature-controlled environment with emergency generator backed electrical outlets. Additionally, to ensure the integrity of the specimens, each freezer is monitored electronically at all times for temperature fluctuations. The center is currently storing approximately 19,000 specimens from subjects enrolled in TRI studies. Additionally, the facility now houses freezers for other research spokes including Liver/Obesity Research team, the Cancer team, Cardiac Surgery team, Advanced Lung program and Neurosciences. The specimens are available for future biomarker discovery and validation.

To develop true translational research projects, the data obtained from gene expression studies must be linked to clinical and long-term outcomes data. Data obtained by using these specimens are linked to a “HIPPA compliant” clinical database (clinical, demographic, and laboratory data) which is maintained by a member of the Data Management team (Yun Fang, MS). Furthermore, the outpatient clinic of TRI is designed to provide the infrastructure for advanced clinical trials and biomarker validation protocols. TRI and all its components are managed by the Administrative Director, Manirath Srishord, RN, BSN and supported by Gerry Rice, who is involved in scheduling research patients, ordering supplies, and other business related issues.

TRANSLATIONAL RESEARCH LABORATORY

The Translational Research Laboratory provides several functions, including projects developed for biomarker validation and implementing personalized medicine protocols. This past year has been an exceptionally prolific year for the TRI lab. Projects have included obesity-related non-alcoholic steatohepatitis (NASH) diagnostic biomarker discovery, and an assessment of cytokines and gene expression regulation in gastric tissue of obese patients. The techniques used in this laboratory include multiplexed analysis of the soluble proteins using the Bio-Plex system, and the use of qPCR arrays for the rapid and accurate detection of gene expression.
All our projects are focused on advancing our understanding of the range of chronic liver diseases and confounding factors, including obesity, diabetes type II, and metabolic syndrome.

Most of the research projects are being conducted in collaboration with George Mason University and involve the participation and training of students from various academic levels. A majority of the experimental projects are coordinated by Dr. Aybike Birerdinc, Dr. Michael Estep, and Dr. Ancha Baranova.

David Armistead (PhD student) is working on an analysis of the miRNA profiles of the visceral adipose patients with liver fibrosis. Rohini Mehta (PhD student) is involved in gastric tissue profiling using qPCR arrays to query gastric tissue samples with the aim of discovering possible relationships between NASH, Obesity, Type II Diabetes (T2D), and gene expression profiles.

In conjunction, undergraduate student Reem Alhussain is using the same tissue samples in a study aimed at determining the best set of housekeeping genes for the use of data normalization in qPCR studies of gastric tissue. For the same subset of patients, cytokine profiles are obtained by using the Bio-Plex system, and gastric tissue slides are stained to detect cytokine receptors. These latter studies involve students Darshan Desai (post-baccalaureate student) and Amanda Zirzow (M.S. student), respectively. Nandita Niranjan (M.S. student) is involved in the study aimed to correlate gene expression profiles of obesity-related genes with underlying polycystic ovarian syndrome (PCOS). The cytokine profiling aspect of this study using ELISA assays include eThuyTran (post-baccalaureate student).

The efficacy of various protocols for RNA and serum preservation involves the work of Beth Eom (M.S. student). We are also investigating the relationship between melanogenesis and secondary complications of obesity. This project includes the work of Massih Abawi (PhD student), Sandra Page (PhD student), and Amanda Zirzow (M.S. student).

We have published numerous abstracts for various international conferences, including the American Association for the Study of Liver Disease (AASLD), Digestive Disease Week (DDW), and the European Association for the Study of the Liver (EASL) 2009 Annual Meetings. Additionally, our team has published a large number manuscripts in various journals, including high-impact publications such as Hepatology, Obesity Surgery, Current Molecular Medicine, Journal of Hepatology, and Journal of Viral Hepatitis.

In 2009, we celebrated the graduation of Dr. Ganiraju Manyam and Shanna Bolden, M.S. The team looks forward to another productive and rewarding year at the TRI laboratory. Future projects in clude protocols addressing heart disease and obesity as well as other co-morbidities as we continue to research and develop diagnostic and prognostic biomarkers and provide valuable hands-on training opportunities for the next generation of young researchers. The following is a list of on-going projects:

1. ELISA of inflammatory cytokines involved in non-alcoholic fatty liver disease.
2. Biopanel of cytokines for non-alcoholic fatty liver disease and NASH diagnostics
3. Melanin assessment in obesity
Activities for 2009 are as follows:

- Designed questionnaire survey to measure PI’s annual academic productivity.
- Developed electronic questionnaire for Physician flow study.
- Worked with clinical staff to develop applications identifying the right candidates for clinical trials and tracing phone log to avoid duplicated call events.
- Maintained database for Predictor study protocol.
- Introduced Oracle database server to various department and helped them understand how database applications work and how to initialize their studies.
- Compared bariatric surgical subject’s activity level with chronic liver diseases subjects.
- Provided support to a variety of studies by compiling or manipulating data.
- Collaborated with Inova Fair Oaks Hospital’s Bariatric Surgery Center to perform data analysis.

Biostatistics specialists provided data analysis support for studies conducted by the research staff of the Center for Integrated Research. Biostatisticians are responsible for:

- Validating, cleaning, processing, analyzing and reporting against a wide range of biomedical datasets.
- Interfacing with the scientists to develop data analysis protocols and methods; designing and applying knowledge management as well as quality check protocols.
- Development of statistical analysis methods, bioinformatics algorithms, and data mining techniques; design, implementation and annotation of programming code for data analysis; interpretation and presentation of the results of analysis of biomedical data (which, in 2009, included genomic, proteomic, outcomes, Quality of Life and cost effectiveness data, nation-wide data collections, and wet-lab experiment results).

BIO-SPECIMEN BANKING

The center’s bio-specimen banking facility now houses eleven minus 80°C freezers in a temperature controlled environment with backup electricity and a sophisticated electronic temperature monitoring system. Currently, over 19,000 specimens from 1800 Center for Liver Diseases’ patients are stored in six freezers. Additionally, Cancer, Neurosciences, Trauma, Cardiac Surgery, and Advanced Lung research teams have acquired additional freezers that are now stored in the Bio-Specimen banking facility.

4. Analysis of total CDT in patients with obesity-related NAFLD.
5. Detection and determination of brown adipose tissue-related genes in visceral adipose tissue
6. Determination of stable housekeeping genes for adipose tissue for the purposes of data normalization
7. Inflammatory cytokines and obesity-related panels with RNA from gastric tissue
8. Gene expression profiles in HCV-related fibrosis
11. Gastric Microbiota in post bariatric surgery patients with gastric resection
12. Gut peptide hormones and liver disease (Bio-Plex and ELISA)
TRI OUTPATIENT CLINIC

TRI Outpatient Clinic provides innovative and cutting-edge research protocols to help treat and manage several chronic diseases. Currently, clinical trials (Phase Ib-III) at the center consist of funded protocols. Implementation of the clinical trials is carried out by the clinical trial team, led by the Center's Research Project Manager, Fatema H. Nader, MSBM, CCRC, CCRP. Fatema received her Masters degree in Bioscience and Business Management and her Bachelor's degree in Health Science from George Mason University. She holds national certification through: the Association of Clinical Research Professionals as a Certified Clinical Research Coordinator (CCRC), and the Society of Clinical Research Associates (SoCRA).

The center customarily staffs two research coordinators and one research assistant. Heshaam Mir, MD received his Medical Degree from American University and his Bachelor's degree in Philosophy and Religion from Boston University. He has nearly four years of experience in clinical research in the area of Gastroenterology and Hepatology. Until recently, the team also included a full time coordinator, Ine-Mari Bornman, B. Soc.Sc. Ine-Mari Bornman received her (BSN) Bachelor's degree in Nursing at University of the Free State in South Africa. She possesses five years of clinical research coordinator experience, including work at a Phase I unit. Prior to joining Inova Health System, she gained experience as an in-house Clinical Research Associate. In addition, the last research member is our research assistant, Juhi Moon, MD. Juhi received her Medical Degree from Ross University and her Bachelor's degree in Biochemistry from UVA. She joined Inova Health System to gain clinical research experience before she starts her residency program next year at Allegany General Hospital in Pittsburg, PA.
Inova’s Research Teams or Research Spokes

Research Spokes

Cancer Center Research 22
Center for Liver Disease 25
Gynecologic Oncology Research 33
Inova Heart and Vascular Institute — Advanced Lung Disease 34
Inova Heart and Vascular Institute — Cardiology Research 38
Inova Heart and Vascular Institute — Cardiac Surgery Research 39
Interventional Radiology Research 43
Neuroscience Research 44
Nursing Research 47
Orthopaedics Department Research 50
Orthopaedics Research: Anderson Orthopaedic Research Institute 52
Pediatric Research 55
Psychiatry Research 59
Trauma Research 60
Research Presentations of Inova Health System 61

Only Academic Productivity Crediting Inova Health System was Utilized in the Development of the Annual Report
Clinical and academic translational research is an integral part of Inova Fairfax Hospital Cancer Center’s (IFHCC) mission to provide the highest quality care and to improve the lives of those affected by cancer. Clinical trials enable the IFHCC to provide novel therapies to patients and gain new knowledge for the future. IFHCC and its affiliated physicians are involved in a robust portfolio of collaborative intergroup clinical trials with US Oncology, Eastern Cooperative Oncology Group, ACOSOG, and CALGB. Routinely updated, these studies are available on the web at www.inova.org.

Built on the strength and diversity of our clinical volume, IFHCC physicians conduct innovative translational genomic and proteomic research in the areas of breast, lung, brain, multiple myeloma, sarcomas, and gynecologic malignancies. In 2009, IFHCC expanded its research opportunities to include additional types of cancer, increased our collaboration with new agencies and sponsors, and continued to explore future growth opportunities.

One major focus in 2009 was the important partnership with George Mason University (GMU) and the Center for Applied Proteomics and Medicine. Under the direction of Kirsten Edmiston, MD, and Lance Liotta, MD, PhD, this effort brings together the strength of clinical excellence and renowned basic science expertise to better understand the development of pre-invasive and invasive breast cancer.

Based on gracious funding from the Department of Defense and the Susan G. Komen Foundation, Inova and GMU researchers are studying the role of breast cancer stem cells and DCIS in the development of breast cancer as well as optimal ways to preserve tissues for proteomic studies. In 2009, physicians under the direction of Alexander Spira, MD and Emanuel Petricoin, PhD (GMU) opened a novel translation clinical trial using imatinib and vectibix for patients with colorectal cancer with metastatic disease with sponsorship by Novartis Pharmaceuticals.

Under the direction of Nicolas Robert, MD, IFHCC participates in the Expression Project for Oncology (expO) sponsored by the International Genomics Consortium (IGC). Additional shared research studies include participation in the Latin American Cancer Research Coalition at Georgetown University to better understand the needs of underserved patients with cancer. Other projects include collaboration with Life with Cancer in the areas of symptom and distress management under the direction of Paul Clark, PhD.

Supported by the dedication of the physicians and staff, under the direction of Belinda Conte, 2010 promises to be a productive and rewarding year. The following lists the publications of the cancer research team for 2009.

BOOKS, BOOK CHAPTERS, AND JOURNAL ARTICLES

1. Espina V, Mueller C, Edmiston KH, Sciro M, Petricoin EP, Liotta LA. Tissue is alive: new technologies are needed to address the problems of protein biomarker pre-analytical variability. Accepted to Proteomics: Clinical Applications (2009)

ABSTRACTS AND PRESENTATIONS TO NATIONAL/INTERNATIONAL MEETINGS

3. Robert NJ, Discussing Costs of Care with Patients: The Community Oncology Perspective, Presentation at 2009 ASCO Annual Meeting

LECTURES AND FACULTY PRESENTATIONS AT NATIONAL OR INTERNATIONAL MEETINGS

5. Robert, N, Select Highlights from SABCS, 2008* Penn State Symposium, in February, 2009
6. Nguyen BL, Kanani S, Advances in Stereotactic Radiosurgery and the Program at Inova Fairfax Hospital, Department of Neuroscience Grand Rounds, February 4, 2009.
Inova’s Center for Liver Diseases (CLD) continues to be a leader in the treatment of patients with chronic liver diseases. The center’s mission is to provide patients with superb clinical care and innovative, cutting-edge research protocols. Both activities are carried out in a clinical, academic environment that involves teaching gastroenterology-hepatology fellows.

Two areas of research focus for CLD involves obesity-related fatty liver disease and hepatitis C (HCV). The spectrum of our research portfolio includes, clinical, translational, and outcomes research projects. Patients who participate in clinical research gain access to the most recent approaches in treating the two most common forms of chronic liver disease in the world.

As noted previously, within its areas of research focus, CLD carries out three types of research: Clinical Trials, Translational Research Protocols (genomics and proteomics protocols), and Health Services Research Projects, including quality of life projects.

The clinical trial part of CLD’s research portfolio focuses on cutting-edge protocols for treating hepatitis C and non-alcoholic fatty liver disease (NAFLD). The hepatitis C protocols are primarily phase 2-3 clinical trials of new protease, or polymerase inhibitors as well as new interferon products for HCV. These are multi-national protocols and CLD is one of the only sites in this region of the country chosen for these protocols. Furthermore, CLD is carrying out investigator-initiated protocols in NAFLD with external support but with our own IND obtained from the FDA.

The second area of research for members of the CLD is translational research. The translational research projects of CLD include gene expression, proteomics, and biomarker discovery protocols focused on obesity-related NAFLD and hepatitis C. Members of CLD are internationally recognized experts in this area of research. These pioneering protocols are performed in conjunction with colleagues from George Mason University (Drs. Ancha Baranova, Vikas Chandhoke, Lance Liotta, and Emmanuel Petricoin) as well as industry partners, such as Celera. As a result of these collaborations, CLD has secured research grants and registered five patents for biomarkers over the past year. These projects have spawned a large number of original research publications in peer-reviewed journals and presentations at international scientific meetings.

The third type of CLD research focuses on health services, primarily health-related quality of life. Again, CLD members are known internationally for their expertise in quality of life (QoL) research in liver disease. In collaboration with Inova’s Outcomes Research Program, CLD maintains one of the largest QoL databases in liver disease. In collaboration with Dr. Lynn Gerber, Dr. Lisa Pawloski from GMU and Inova’s Outcomes Research Program, the center is involved in functional assessment and nutritional status of patients with liver diseases.

In addition, CLD has been involved in the analysis of large databases such as NHANES III-mortality linked files to study the long term outcomes of several important liver diseases. These analysis have led to some very important data linking metabolic syndrome to mortality in patients with chronic liver disease.

In 2009, the center carried out over 34 research projects for patients with viral hepatitis and Non-alcoholic Steatohepatitis (NASH). These projects include 13 cutting-edge clinical trials, 7 translational research projects, and 14 outcomes research projects.

RESEARCH TEAM
Members of the CLD integrate their clinical practice with patient-oriented research and teaching. Manirath Srishord, RN, BSN, Administrative Director of the Center and Fatema Nader, MSBM, CCRC, Research Program Manager oversee all aspects of clinical and research personnel. In addition to Dr. Zobair Younossi, who is the principle investigator for all projects, Dr. Nila Rafiq (Research Fellow), and Brian Lam, PA-C (Physician Assistant), are sub-investigators for these protocols.

In addition to the Clinical Trial Team, the Translational Research projects of the CLD is supported by a part-time Research Assistant, Arian Afendy,
BS, who has been working with CLD for the past three years. She is responsible for several important translational research projects for specimen collection, data collection, and data entry, and actively participates in presenting findings at national and international meetings.

Hepatitis C Clinical Research:
The year 2009 was marked by several important increases in clinical research activity. Hepatitis C continues to present a serious health challenge that affects 170 million people worldwide, including 4 million in the United States and 8 million in Europe and Japan. Because a sustained viral response is less than 50% in hepatitis C patients infected with genotype 1 when they are treated with the current standard of care (pegylated IFN type 1 when they are treated with the current standard of care (pegylated IFN-α plus ribavirin), new and more effective treatments are much needed. Our hepatitis C protocols are primarily Phase II-III clinical trials of new protease or polymerase inhibitors and new interferon agents for treating hepatitis C. These are multi-national protocols and CLD is one of the only sites in this region of the country chosen to participate. To date, a total of 39 subjects have been enrolled in the various hepatitis C protocols as described below:

1. A Phase 3 Study of 2 Dose Regimens of Telaprevir in Combination with Peginterferon Alfa-2a (Pegasys®) and Ribavirin (Copegus®) in Treatment-Naïve Subjects with Chronic Hepatitis C.
2. A Phase 3 Study of 2 Dose Regimens of Telaprevir in Combination with Peginterferon Alfa-2a (Pegasys®) and Ribavirin (Copegus®) in Genotype 1 Hepatitis C Subjects who have not Achieved Sustained Viral Response with a Prior Course of Interferon Based Therapy.
3. A Phase 2 study of Telaprevir (VX-950) in Combination with Pefinterferon Alfa-2a (Pegasys®) and Ribavirin (Copegus®) in Subjects with Genotype 1 Hepatitis C who have not Achieved Sustained Viral Response with a Prior Course of Interferon-Based Therapy.
4. A Phase 2, Randomized, Double-blind, Placebo-controlled Study to Evaluate the Safety and Efficacy of Filibuvir plus Pegylated Interferon Alpha-2a and Ribavirin in Treatment Naïve, HCV Genotype 1 infected Subjects.
5. A Phase 2b, Double-blind, Randomized, Parallel-group, Placebo-controlled Study to Evaluate the Safety, Tolerability and Efficacy of GS-9450 in Adults with Chronic Hepatitis C Virus Infection.
6. A Phase 2, Randomized, Double-Blind, Placebo-controlled, Ascending Multiple Dose Trial of the Safety, Efficacy, and Pharmacokinetics of ANA598 Administered with Pegylated Interferon and Ribavirin in Treatment- Naïve Genotype 1 Patients with Chronic Hepatitis C Infection.
7. Phase 2B, PartiallyBlinded, Randomized Study in Treatment- Naïve Subject with HCV Genotype 1 to compare the Efficacy, Safety, and Tolerability of three doses of LoctEron™ Plus Ribavirin given Biweekly in Comparison with PEG-Intron™ plus Ribavirin Given weekly.
8. EXTEND: a 3-year, Virology follow-up Study in Subjects Previously Treated with Telaprevir in Select Clinical Studies.
9. Hepatitis C Trial: A phase II randomized, multicenter, open-label study of HCV therapeutic Vaccine (TG4040) in combination with pegylated interferon alfa-2a and ribavirin versus pegylated interferon alfa-2a and ribavirin in treatment- naïve patients with chronic genotype 1 hepatitis C.
10. Hepatitis C Trial: Controlled clinical study of a VX-222 and Telaprevier based regimen in combination with Peginterferon alfa-2a or Ribavirin in treatment- naïve subjects with genotype 1 chronic hepatitis C.

Non-alcoholic Steatohepatitis (NASH) Clinical Research:
Currently, no effective therapies are available for treating non-alcoholic steatohepatitis, and because the pathogenesis of NASH is unknown, therapeutic strategies are chiefly empirical. Over the past 15 years, Dr. Younossi and his team have been considered international leaders in the study of this important liver disease.

The center is currently carrying out a large number of translational research projects (please see TRI), outcomes research projects (please see Outcomes Research Program), and clinical research in non-alcoholic fatty liver disease. In terms of clinical trials in NAFLD, the center carries out an investigator initiated protocol in NASH with external industry support but with an IND our center obtained from the FDA. The study teams involved in conducting this investigator-initiated trial includes the clinical research team, data management team, regulatory affairs, outcomes research as well as translational research team. Currently, a total of 38 subjects have been enrolled in the NASH protocols as described below:

1. Investigator Initiated Trail: Open Label Clinical Trial of High Dose URSO in Severely Obese Persons with Non-alcoholic Steatohepatitis (NASH Undergoing Bariatric Surgery).
2. Investigator Initiated Trial: Open Label Clinical Trial of High Dose URSO in Combination with Vitamin E in Severely Obese Persons with Non-alcoholic Steatohepatitis (NASH) Undergoing Bariatric Surgery.
The following are publications and presentations by the researchers of the Center for Liver Diseases for 2009:

BOOKS, BOOK CHAPTER, AND JOURNAL ARTICLES

4. J Kallman, Z Younossi. Quality of Life After Liver Transplantation for Hepatitis C. *Hepatitis C And Liver Transplantation Textbook* (Sandeep Mukherjee, MBBC, Editor), 2010 (In press)

drome with Depression and Anxiety in Patients Undergoing Weight Reduction Surgery. Submitted 2010

28. Z Younossi. Mechanisms of Viral Eradication and Early Treatment in Hepatitis C: Implications for Therapy Clinical Update. AGA/Medscape Clinical Update; Published December 2009.

32. J Kallman, S Tran, A Arsalla, D Haddad, M Stepanova, Y Fang, VJ. Wrobel, M Srishord, ZM. Younossi. Vietnamese Community Screening for Hepatitis B (HBV) and Hepatitis C. J of Viral Hepatitis 2010 (In Press)

ABSTRACTS AND PRESENTATIONS TO NATIONAL/ INTERNATIONAL MEETINGS

1. Nila Rafiq, Maria Stepanova, Brian Lam, and Zobair M. Younossi. Type 2 Diabetes, Obesity And Hypertension Are Associated With Mortality In Hepatitis C Patients. European Association for the Study of Liver, Copenhagen, Denmark 2009 (Oral Presentation)

3. Ancha Baranova, Nila Rafiq, Ishmeet Kaur, Noreen Hossain, Manpreet Randhawa, Vikas Chandhoke, Zobair M. Younossi. Differences of Adipocytokine Between Non-Alcoholic Fatty Liver Disease And Coronary Artery Disease. European Association for the Study of Liver, Copenhagen, Denmark 2009

4. Stepanova, Maria, Rafiq, Nila; Mir, Heshaam M.; Bornman, Ine-Mari; Younossi, Zobair M. Mortality and Liver Related Mortality in Patients with Chronic Liver Disease: Association with Comorbidities of Metabolic Syndrome (MS) Digestive Disease Week, Chicago, Illinois, 2009 (Oral Presentation).

5. Hossain, Noreen; Afendy, Arian; Stepanova, Maria; Rafiq, Nila; Nader, Fatema; Srishord, Manirath K.; Goodman, Zachary D.; Younossi, Zobair M. Independent Predictors of Fibrosis in a

6. Estep, Michael; Birerdinc, Aybike; Wheeler, Angela M.; Page, Sandy; Stepanova, Maria; Baranova, Ancha; Alathari, Husam K.; Younossi, Zobair M. Carbohydrate-Deficient Transferrin in Patients with Fatty Liver Disease. Submitted to Obesity Meeting 2009.

15. M Stepanova, D Limongi, A Afendy, M Hieronon, I Younossi, T Gramlich, L Liotta, E Petricoin, Z Younossi. Protein Pathway Bio markers Signature Associated with Superimposed Non-Alcoholic Steatohepatitis (NASH) and Advanced Fibrosis in Patients with Chronic Hepatitis C. European Association for the Study of Liver Disease, 45th Annual Meeting 2010, Vienna, Austria.

22. Weinstein, Lynn Gerber, Jillian Kallman, Yun Fang, Patrice Winter, Juhi Moon, and Zobair Younossi. Relationship between Chronic
Sleep Restriction and Health-Related Quality of Life. American Psychosomatic Society 68th Annual Scientific Meeting, March 10 - 14, 2010, Portland, OR

24. NL Gerber, J Kallman, I Kaur, Y Fang, ZM Younossi. Demo graphic, diagnostic and disease characteristics of patients with chronic liver disease correlated with physical activity. ISPRM Istanbul, Turkey, 2009

26. Jillian B. Kallman, Sang V. Tran, Aimal Arsalla, Dmitri Haddad, Maria Stepanova, Fang Yun, Valerie Wrobel, Manirath Srishord, Zobair M. Younossi. Screening for Hepatitis B (HBV) and Hepatitis C (HCV) in a Vietnamese Community of Northern Virginia. American Association For Study Of Liver Disease 2009, Boston MA.

31. Z. Younossi, D Limongi, M Stepanova, M Pierobon, A Afendy, L. Liotta, E. Petricoin. Protein Pathway Biomarkers Predicting Sustained Virologic Response (SVR) to Pegylated Interferon (PEG-IFN) and Ribavirin (RBV) in Patients with Chronic Hepatitis C (CH-C). European Association for the Study of Liver Disease, 45th Annual Meeting 2010, Vienna, Austria.

32. G Manyam, I Younossi, T Gramlich, A Baranova, Z Younossi, A Birerdinc, M Stepanova, A Afendy. Up-regulation of Matrix Metalloproteinase 9 (MMP-9) and Interleukin-8 (IL-8) in African-American Patients with Chronic Hepatitis C. Digestive Disease Week, Annual Meeting 201 0, New Orleans, Louisiana

33. D Limongi, M Stepanova, A Afendy, M Pierobon, R Agrawal, L Liotta, E Petricoin, ZM Younossi. Protein Pathway Biomarkers Predicting Sustained Virologic Response (SVR) to Pegylated Interferon (PEG-IFN) and Ribavirin (RBV) in Treatment-Naive Patients with Chronic Hepatitis C. Digestive Disease Week, Annual Meeting 2010, New Orleans, Louisiana.

34. D Desai, M Estep, A Birerdinc, H Mir, A Baranova, V Chandhoke, ZM Younossi. Markers of Insulin Resistance in During HCV Treatment: A Relationship to Sustained Virologic Response (SVR) Digestive Disease Week, Annual Meeting 201 0, New Orleans, Louisiana

35. A Birerdinc, M Stepanova, A Afendy, G Manyam, I Younossi, T Gramlich, A Baranova, ZM Younossi. Up-Regulation of Matrix Metallloproteinase 9 (MMP-9) and Interleukin-8 (IL-8) in African-Americans Patients with Chronic Hepatitis C. Digestive Disease Week, Annual Meeting 201 0, New Orleans, Louisiana (Submitted)

Q2week Controlled-Release-Interferon-Alpha2b+Ribavirin Reduces Flu-Like Symptoms >50% And Provides Equivalent Efficacy In Comparison To Weekly Pegylated-Interferon Alpha2b+Ribavirin In Treatment-Naive-Genotype-1-Chronic-hepatitis-C: Results From Empower, A Randomized-Open-Labeled-12

40. Week-Comparison In 133 Patients. European Association for the Study of Liver Disease Meeting 45th Annual Meeting 2010 Vienna, Austria. Late Breaker (Submitted)

41. SS Lee, EJ Heathcote, W Sievert, H Trinh, K Kaita, ZM Younossi, J George, M Shiffman, P Marcellin, J Sorbel, J Anderson, E Mon dou, J Quinn, Franck Rousseau. Tenofovir Disoproxil Fumarate (TDF) Versus Adefovir Dipivoxil (ADV) In Asians With HBeAg-Positive And HBeAb-Negative Chronic Hepatitis B Participating In Studies 102 And nd 103. The 13th International Symposium on Viral Hepatitis and Liver Disease (ISVHLD) 2009

42. Rubin Aquino, Maria Stepanova, Abdulah Alsheddii, Ravindra Gupta, Fang Yun, Zobair M. Younossi. Independent Predictors of Fibrosis in Patients with Chronic Liver Disease. American Association for the Study Of Liver Disease Meeting 45th Annual Meeting, Boston MA

43. S Lee, Jacobs, Z Younossi, E Mandoux. Three Years Efficacy and Safety of Tenofovir Disoproxil Fumarate (TDF) in Asians with HBeAg-positive and HBeAg-negative Chronic Hepatitis B, Preliminary Analysis. American Association for Study of Liver Disease 2009, Boston MA.

44. Z. Younossi, M. Stepanova. Independent Predictors Of Hepatocellular Carcinoma (Hcc)-Related Mortality And Non-HCC Liver-Related Mortality: A Population Based Study. European Association for the Study of Liver Disease Meeting 45th Annual Meeting 2010, Vienna, Austria. Late Breaker (Submitted)

LECTURES AND FACULTY PRESENTATIONS TO NATIONAL OR INTERNATIONAL MEETINGS

2. Natural history and clinical evaluation of NAFLD and NASH. “9th International Meeting on Therapy in Liver Diseases”, Barcelona, Spain, September 2009

3. Update in the Treatment for Non-alcoholic Fatty Liver Disease (NAFLD). General Hepatology Update Course, American Association for the Study of Liver Disease, Boston, MA, November 2009

6. Hepatic Encephalopathy-CME, Chronic Liver Disease Foundation, Las Vegas, NV January 2010

7. NAFLD and NASH. Scripps Clinic 25th Annual Treatment in Chronic Liver Disease March 2010

8. Controversy: Results from PIVENS Trial (IR is not Important). Scripps Clinic 25th Annual Treatment in Chronic Liver Disease, March 2010

12. Quality of Life in Chronic Liver Disease, Chairperson for the Session. UEGW/WCOG ASTRO 2009, London, United Kingdom, November 2009

13. Hepatitis B and Hepatitis C Content Development Meeting. Chronic Liver Disease Foundation, Dallas, TX 2009
14. The Past, Present, and Future of Hepatitis C: A Discussion With the Experts. AGA Institute and Medscape, Chicago 2009
15. Hepatitis C and Metabolic Syndrome. CMETV, Chronic Liver Disease Foundation, Chicago 2009
16. STAT-C Therapy for Chronic Hepatitis C Round Table (Chair), New York, NY November 2009
17. Hepatic Encephalopathy CME Meeting. Chronic Liver Disease Foundation Dallas 2009
The Gynecologic Oncology Research program is a new program currently under development. The program currently involves several investigators including Dr. Annette Bicher, Dr. John Elkas, Dr. Hans Krebs, Dr. Ruchi Garg, Sheila Whitt, RN, BSN and Angela Alonge, BS.

The goals of the program include:

1. Support translational research at the National Cancer Institute with tissue collection studies.
2. Participate in National Cooperative group studies in ovarian, endometrial, cervical and vulvar cancer when available.

The program is currently involved in several GOG projects and industry-sponsored and NCI sponsored protocols. Within the next year the research team plans to grow their research portfolio and their academic productivity.

The research team did not provide a list of publications and presentations.
The Inova Advanced Lung Disease and Transplant Program is dedicated to the care of patients with many forms of advanced lung disease, including conditions such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis (IPF), pulmonary hypertension (PH), cystic fibrosis, and sarcoidosis.

The research program has numerous facets including pharmaceutical drug trials of medications for IPF, PH, and lung transplantation, and active clinical and research collaboration with the NIH through the intramurally funded NIH-Inova Advanced Lung Disease Program. Genomics research into IPF is conducted through a collaboration with George Mason University. In addition, original Inova investigator initiated projects account for most of the publications emanating from the Program. The Program has also collaborated with esteemed research institutions such as the Cleveland Clinics, Mayo Clinic, UCLA, Johns Hopkins, The University of Florida, the University of Pittsburgh, and Vanderbilt University. In 2009, the program's research resulted in thirteen original research papers published or submitted to the peer-reviewed literature, and 22 presentations at or submitted to international meetings. The research program owes its success to the dedication of our research coordinators, a close collaborative environment, and most importantly the patients themselves, who continue to empower and enable the research by their willingness to participate in the clinical trials.

BOOKS, BOOK CHAPTERS, AND JOURNAL ARTICLES

1. Sh lobin OA, Nathan SD. Interstitial lung disease and pulmonary hypertension. (edited by Robert Baughman, MD and Ronald du Bois, MD)

ABSTRACTS AND PRESENTATIONS TO NATIONAL/INTERNATIONAL MEETINGS

3. S Kilaru, OA Shlobin, S Ahmad, SD Barnett, SD Nathan. Combined...
Pulmonary Hypertension (PH) and Interstitial Lung Disease in Connective Tissue Disorders: The Role of PH Therapy. Am J Respir Crit Care Med 2009;179:A4928

LECTURES AND FACULTY PRESENTATIONS TO NATIONAL/INTERNATIONAL MEETINGS

1. Pulmonary Hypertension: Who to treat and when? Medical Grand Rounds, George Washington Hospital, March 5th, 2009

2. Pulmonary Hypertension: Who to treat, when and then.... Cardiology Grand Rounds. Mary Washington Hospital, Fredericksburg, VA March 19th 2009

3. Lung transplantation: Who, when and then... Virginia Association of Cardiac and Pulmonary Rehabilitation conference, March 21st University of Mary Washington, Fredericksburg, VA

4. Pulmonary Hypertension: Who to treat and when? Winchester Medical Center Grand Rounds. April 1st 2009

13. Pulmonary Hypertension in Patients with Interstitial Lung Diseases, Interstitial Pneumonia and Sarcoidosis. Meet the Professor session. ATS May 17th 2009. San Diego
17. Pulmonary Hypertension: Who to treat and when? Howard University Medical Grand Rounds June 2nd 2009
18. Pulmonary Hypertension in COPD and IPF. Annual Yale Pulmonary Hypertension conference, Hartford, CT June 4th, 2009
19. Pulmonary Hypertension: Medical and Surgical Treatments. Harley Hinton Lecture Series, Southside Regional Medical Center, Petersburg, VA
20. COPD: Before and beyond bronchodilators. Medical Grand Rounds, Beth Israel Hospital, Newark, NJ, June 18th 2009.
22. Pulmonary Hypertension complicating advanced Pulmonary Fibrosis: To treat or not? Rochester University Pulmonary Grand Rounds. October 7th, 2009
24. IPF and Pulmonary Hypertension. St. Vincent’s Hospital, Dublin, Ireland November 26th 2009
25. Sarcoidosis and Lung Transplantation. The Mater Hospital, Dublin, Ireland November 27th 2009
INOVA HEART AND VASCULAR INSTITUTE (IHVI)

Inova Heart and Vascular Institute’s cardiology research encompasses several areas of expertise including Interventional Cardiology, Electro-physiology, Heart Failure, and Heart Transplant. In 2009, patients were enrolled in studies across all disciplines. There were approximately seventeen active protocols and registries enrolling patients with others in the patient follow-up stage.

ADVANCE D HEART FAILURE STUDIES
- Interagency Registry of Mechanically Assisted Circulatory Support (INTERMACS)
- Prospective Evaluation of Elastic Restraint to Lessen the Effects of Heart Failure (PEERLESS HF) Trial
- Reducing Decompensation Events Utilizing Intracardiac Pressures in Patients with Chronic HF - Chronic ICD Implantable Cardioverter Defibrillator (REDUCE HF)
- Evaluation of the VentrAssist Left Ventricular Assist Device as a Bridge to Cardiac Transplantation-Pivotal Trial
- Evaluation of the VentrAssist™ Left Ventricular Assist Device for the Treatment of Advanced Heart Failure - Destination Therapy
- Double-blinded Placebo-Controlled, Multicenter Acute Study of Clinical Effectiveness of Nesiritide in Subjects with Decompensated Heart Failure (ASCEND HF)
- Evaluation of the HeartWare® Left Ventricular Assist Device (LVAD) System for the Treatment of Advanced Heart Failure

INTERVENTIONAL/DIAGNOSTIC CARDIOLOGY
- Coronary Stent Graft Use in Coronary Aneurysm, HDE Number H000001
- A Clinical Evaluation of the Medtronic Endeavor® Resolute Zotarolimus-Eluting Coronary Stent System in the Treatment of De Novo Lesions in Native Coronary Arteries with a Reference Vessel Diameter of 2.25 mm to 4.2 mm.

PEDIATRIC/ADULT CONGENITAL INTERVENTIONAL CARDIOLOGY
- Patent Foramen Ovale closure with the AMPLATZER PFO Occluder in Patients with Recurrent Cryopgenic Stroke due to presumed paradoxical embolism through a Patent Foramen Ovale who have failed conventional drug therapy (PFO ACCESS Registry)
- Prospective Randomized Investigation to Evaluate Incidence of Headache Reduction in Subjects with Migraine and PFO Using the AMPLATZER PFO Occluder compared to Medical Management (PREMIUM)

ELECTROPHYSIOLOGY
- Optimum Lead Insulation Material Registry
- Response of Cardiac Resynchronization Therapy Optimization with V-V Timing in Heart Failure Patients (Response HF)
- SMARTDELAY determined AV Optimization: A comparison to Other AV Delay Methods Used in Cardiac Resynchronization (SMART-AV).

CARDIOLOGY-CV SURGERY
- Use of the Accumetrics VerifyNow P2Y12 Platelet Function Assay to Determine Readiness for Cardiac Surgery after Receiving a P2Y12 ADP binding site inhibitor During Coronary Catheterization and/or Percutaneous Coronary Intervention

BOOKS, BOOK CHAPTERS AND JOURNAL ARTICLES
1. Rajesh Kabra, Chirag M. Sandesara, Christopher J. Berry. “Cardiology”. In MA Graber and JK Graber (Eds.), Family Practice

LECTURES AT LOCAL MEETINGS

1. Christopher May, MD. Cardiac Allograft Rejection. Transplant Grand Rounds. Inova Heart and Vascular Institute, Fairfax, VA

2. Chirag Sandesara, MD. Managing Cardiac Arrhythmias. Inova Heart and Vascular Institute Smart Heart Meeting, Inova Heart and Vascular Institute, Fairfax, VA

3. Chirag Sandesara, MD. Cardiac Sarcoidosis. From Granulomas to Sudden Death and Everything in Between. Cardiology Grand Grounds, Prince William Hospital, Manassas, VA

4. Chirag Sandesara, MD. A Healthy Heart: How to Take Care of It. Mini Medical School, Fauquier Hospital, Warrenton, VA

5. Chirag Sandesara, MD. Predictors of Sudden Cardiac Death. Virginia Cardiovascular Foundation CME, Prince William Hospital, Manassas, VA
Academically, this past year was quite productive with a large number of abstract submissions, poster presentations, oral presentations, faculty presentations, and published journal articles. We also received a one Inova Executive Director Research Grant for Summer Students and submitted three National Institutes of Health and one National Science Foundation grant applications.

BOOKS, BOOK CHAPTERS AND JOURNAL ARTICLES

ABSTRACTS AND PRESENTATIONS TO NATIONAL/INTERNATIONAL MEETINGS

LECTURES AND FACULTY PRESENTATIONS TO NATIONAL OR INTERNATIONAL MEETINGS:

2. Ad N. A Minimally Invasive Full Maze Lesion Set for Atrial Fibrillation: Technique and Results.

20. Dr. Niv Ad – Post-Graduate Course, ISMICS, San Francisco, California, June 2009.

In 2009, there were a number of industry sponsored research protocols carried out by members of Interventional radiology. The following is a summary of these protocols:

1. **Cardiovascular Outcomes in Renal Atherosclerotic Lesions (CORAL)**
 - Prospective, multicenter, unblinded, two arm, randomized trial designed to test the hypothesis that medical therapy with stenting of hemodynamically significant (angiographically documented) renal artery stenosis in patients with systolic hypertension reduces the incidence of cardiovascular and renal events compared with medical therapy alone.
 - Primary Endpoint: Event-free survival from cardiovascular and renal adverse events defined as a composite of cardiovascular or renal death, stroke, MI, hospitalization for CHF, progressive renal insufficiency, or need for permanent renal replacement therapy.
 - Enrollment goal 1080 subjects with 200 sites internationally.
 - Follow subjects for up to 5 years, closely monitoring for blood pressure control and management of other risk factors.

A subgroup of 400 patients will undergo renal artery Duplex ultrasound at baseline, 1 year and study termination.

2. **CRUX Biomedical Evaluation of the Crux Inferior Vena Cava Filter System – (“Retrieve”)**
 - This is an open label, non-randomized, prospective, multicenter study.
 - Primary Efficacy Objective: To describe the clinical utility of the Crux IVCF by the following criteria: Absence of a recurrent PE and IVC thrombosis related to the Crux IVCF
 - Primary Safety Objective: To estimate the proportion of patients who experience device/procedure related complications associated with the Crux IVCF. 104 patients considered to be at risk for PE are expected to be enrolled in this study. It is anticipated that approximately 30 patients will undergo retrieval of the implanted filter.

3. **SIR-Spheres Registry**
 - Nationwide registry for all subjects undergoing SIR-Spheres procedure
 - The purpose of the Registry is to build a Phase IV (i.e., post-marketing) database of patient demographics, primary and secondary diagnoses, treatment details, complications and patient outcomes. The data will be used to further evaluate and analyze patient outcomes from SIR-Spheres therapy.

In addition, de-identified, aggregate data may be used in discussions with regulatory authorities, public and private payers/insurers, policy-makers, and others.

- Complications identified through analysis of the Registry data will be reported to Sirtex’s Quality Assurance function and addressed in accordance with Sirtex policy and reported to the FDA in accordance with legal and regulatory requirements.

4. **Therasphere HDE**
 - A Humanitarian Device Exemption Use Protocol of TheraSphere or Treatment of Unresectable Hepatocellular Carcinoma
 - Post-Marketing: TheraSphere commercially distributed under HDE # 980006
 - Objectives-Provide supervised access to TheraSphere therapy at this institution, evaluate response to treatment, toxicities and adverse experiences associated with TheraSphere treatment, and survival time
 - Endpoints- Proportion of patients completing scheduled treatment plan,
 - Efficacy: Response to Treatment, Survival Time from First Treatment
 - Safety: Adverse Experiences

The research team did not submit a list of publications and presentations.
Inova Neurosciences research program aspires to be an international leader in clinical and basic research for disorders of the brain and nervous system, to provide training for future neuroscientists and clinicians, and to ensure that Inova’s Department of Neurosciences provides the best possible clinical care for our community. We hope to continually improve the care we provide for our patients through analysis of patient outcomes from current practices, and through front-end involvement in new clinical research interventions.

In the fall of 2007, the departments of Neurology and Neurosurgery joined to form the new Department of Neurosciences under the leadership of Dr. James Ecklund, Chairman of the Department of Neurosciences at Inova Fairfax Hospital.

Being the only Level 1 Trauma Center in the region, Inova Fairfax Hospital cares for a large population of people who have suffered head injuries. Current research opportunities include several potential drug trials aimed at decreasing secondary injury related to the physiologic responses to head injury.

The Stroke Program was ranked this year as among the top 5% of hospitals in the nation for treatment of stroke and ranked “Best in Virginia for Treatment of Stroke.” This program provides the opportunity to perform cutting-edge research to benefit our patients and community, including drug, endovascular, and surgical treatments for stroke as well as secondary prevention interventions.

Future areas of research include comparative outcomes measurements, neuro-oncology trials, genomic and proteonomic strategies to provide personalized medical treatments, and regenerative and functional restoration programs to decrease disability from several diseases including dementia.

The Neuroscience department carried out four funded and five unfunded protocols. The following are publications and presentations from the Department of Neuroscience.

BOOKS, BOOK CHAPTER, AND JOURNAL ARTICLES

BDNF isoforms are differentially expressed in cocaine addicts and are sorted to the regulated secretory pathway independent of the Met66 substitution. Neuromolecular Med. 11:1-12.

ABSTRACTS AND PRESENTATIONS TO NATIONAL/INTERNATIONAL MEETINGS

5. Ecklund J. Decompressive craniotomy – Yes or No. Trauma, Critical Care and Acute Care Surgery Annual Conference. Las Vegas, NV; April, 2009.

10. (Epigenetics Session, R.H. Lipsky, Chair, 11th International Congress on Amino Acids, Peptides, and Proteins, Vienna, Austria, August, 2009).
In 2009, the Inova Health System (IHS) Nursing Research Committee (NRC) continued to expand and solidify the infrastructure required to support nursing research excellence. The NRC includes a representative from each hospital-based research committee as well as representatives from George Mason University, the Inova Research Center, the Medical Library, the Inova Learning Network, Epidemiology and Biostatistics, and the Department of Professional Practice.

The Inova Health System Nursing Research Internship program was launched in the first quarter of 2008, funded by both Inova Health System and a philanthropic donor interested in pursuing Human Caring nursing research. Through a competitive application process in 2009, ten nursing research internships were awarded across five Inova Health System hospitals. During their internship, these research interns were introduced to the research process and mentored through completion of a nursing research study. The majority of study projects focus on strategies to improve patient outcomes and the nursing work environment.

The NRC continues to add to a system-wide repository for nursing research activity utilizing a shared drive and an access database. Productivity reports are available for both the system and the operating unit level. In addition, formal guidelines were finalized to support non-Inova Health System researchers conducting nursing research in collaboration with an Inova Health System registered nurse, enabling expanded partnerships with local university graduate programs. The NRC continues to benefit from established Inova resources in grant writing and statistician support.

In 2009, NRC coordinated the 6th Annual Fall Into Nursing Research conference. The all-day conference included internal and external faculty presenting on a wide range of research topics, including the research process and presentation of research findings. A research poster symposium with over twenty displays was also part of the day’s activities. In addition to the annual research conference, the NRC coordinated two 2-day research workshops, aimed at increasing the skill of the novice nurse researcher. In collaboration with the Inova Learning Network and IHS Professional Practice, the NRC co-hosted a one-day workshop on preparing nursing manuscripts for publication. This writer’s workshop was presented by the editorial staff of the American Journal of Nursing, and included guidance on dissemination of research findings through publication.

BOOKS, BOOK CHAPTERS, AND JOURNAL ARTICLES

ABSTRACTS AND PRESENTATIONS TO NATIONAL AND INTERNATIONAL MEETINGS

LECTURES AND FACULTY PRESENTATIONS TO NATIONAL/INTERNATIONAL MEETINGS

The Biomechanics Research Laboratory of the Department of Orthopaedics at Inova Fairfax Hospital has four broad goals: 1) Foster biomechanical and clinical research among orthopaedic surgeons and help them to solve complex clinical problems; 2) Apply the principles of mechanics and biology to understanding basic mechanisms related to the structure and function of the musculoskeletal system; 3) Design, analyze, and develop bone-implant and prosthetic systems; and 4) Educate residents in performing independent, high-quality research in orthopaedic biomechanics.

The Biomechanics Research Laboratory is dedicated to the discovery and development of biomechanical solutions for a broad array of clinical specialties, such as total joint replacement, orthopaedic trauma injuries, sports injuries, arthroscopic surgery, orthopaedic oncology, spine surgery, and pediatric orthopaedic surgery. The laboratory is equipped with state-of-the-art equipment to investigate the failure mechanism of musculoskeletal implant constructs, help physicians to make best clinical decisions, and design new implants and surgical methods.

Computer simulation is becoming a critical and valuable technique for helping orthopaedic physicians with complicated cases. Inova Fairfax Hospital’s Biomechanics Research Laboratory is equipped with powerful computer workstations and advanced software for computer simulation and analyses of complex musculoskeletal-implant constructs. The computer helps physicians generate patient-specific 3D geometric models based on CT/MRI images, perform virtual orthopedic surgery on the patients’ computer model, analyze the construct strength, and evaluate the potential for long-term implant survival. With this state-of-the-art capability, Inova Fairfax Hospital’s orthopaedic patients can have their proposed surgery performed and analyzed by computer prior to undergoing actual surgery to provide the best possible outcome.

The Biomechanics Research program at Inova Fairfax Hospital finished two projects in 2009:

- Effect of Bone Quality on the Failure of Locked Plate Fixation of Proximal Humerus. Jihui Li, Robert Hymes, Jeff Schulman, Mark Theiss. Funded by: Inova Faculty Research Grant and Smith & Nephew Inc.
- Biomechanical Comparison of Two Types of Fixation of Ludloff Metatarsal Osteotomies: Compression Screws vs. Locking Plate. Steve Neufeld, Jihui Li. Funded by: Merete Inc. and Synthes Inc.

They have recently received four funded projects:

- Patient Specific 3-D Medical Modeling Can Improve Preoperative Surgical Planning of Complex Spinal Orthopedic Cases. Faisal Siddiqui, Jihui Li, Ali...
BOOKS, BOOK CHAPTERS, AND JOURNAL ARTICLES

ABSTRACT AND PRESENTATIONS TO NATIONAL/INTERNATIONAL MEETINGS
Working collaboratively with the Joint Replacement Center at Inova Mount Vernon Hospital, the Anderson Orthopaedic Research Institute (AORI) continues to generate clinically-relevant research related to hip and knee joint replacements. The goal of this collaborative research is to improve the quality of life for both current and future joint replacement patients.

With every joint replacement innovation comes the need to determine how the new technology affects clinical outcome. To evaluate new bearing surfaces and implant designs, AORI is conducting several prospective, randomized clinical trials. AORI also maintains an institutional joint registry database that enables retrospective outcome analyses. In a study that was published during the past year using this database, AORI researchers found that a contemporary third-generation hip replacement design significantly reduced the incidence periprosthetic bone loss (known clinically as osteolysis) compared to a second-generation design that had been used predominantly from 1990 through 2000.

AORI researchers also continue to publish clinical outcome studies related to the use of porous-coated fixation for hip replacements, a technology that was pioneered by Dr. Charles Engh at AORI over 30 years ago. Among knee replacement patients, AORI is working to measure implant wear and determine factors that influence the wear process. AORI is also developing more sensitive techniques for quantifying outcomes after knee replacement. These techniques, including analyses of patient gait and balance, provide objective outcome data enabling improved comparisons of implant designs.

Recognizing that joint replacement patients now routinely expect 20 to 30 years of service from their implants, AORI’s current research also focuses on understanding the mechanisms that lead to long-term implant failure, including wear and bone loss. Using three-dimensional imaging modalities, like computed tomography (CT), AORI is working to improve the diagnosis and treatment of bone loss around joint replacements.

To ensure that their research findings are available to the world-wide orthopaedic community, AORI-affiliated physicians publish their studies in medical journals and present their findings at national and international orthopaedic meetings. In 2009, AORI’s collaboration with Inova yielded 11 publications in peer-reviewed orthopaedic journals. In addition, 32 talks and two posters were presented at major scientific meetings.

BOOKS, BOOK CHAPTERS AND JOURNAL ARTICLES

2. Engh CA Jr, MacDonald SJ, Sritulanondha S, Thompson A, Naudie D, Engh CA Sr. Metal Ion Levels After Metal-on-Metal Total Hip Arthroplasty: A Randomized Trial Clinical Orthopaedics and Related Research. Published January 2009;467:101-111

ABSTRACTS AND PRESENTATIONS TO NATIONAL/INTERNATIONAL MEETINGS

3. Engh GA. Philosophy and Results with UKA and Bicompartamental Arthroplasty. Customized Instrumentation. AAOS 2009 Instructional Course Lecture Presented by Gerard A. Engh on 2/25/09

15. Engh CA Sr CT vs. Plain Films to Evaluate Lysis: When and Why 9th Annual Advances in Arthroplasty Presented by Charles A. Engh,
Sr. M.D. on 10/28/2009 in Boston, Massachusetts

21. Engh GA. Total Knee Revision: A Day in the Life of...Current Concepts in Joint Replacement - Winter 2009, Orlando, FL Presented by Gerard A. Engh, MD on 12/12/09

PEDIATRIC RESEARCH

Inova Fairfax Hospital for Children is committed to providing excellence in pediatric health care by providing the highest quality care, exemplary medical education, and innovative research practice to care for children.

ACADEMIC PRODUCTIVITY AND RESEARCH STUDIES
During the past year, the Department of Pediatrics has continued to develop and support a varied and diverse research focus. These efforts have led our faculty to write a number of published or accepted papers as well as book chapters, and national presentations in 2009.

Research activities include national patient registries and database participation to continually benchmark and utilize evidence based practice initiatives to drive clinical outcomes. Gastroenterology, emergency medicine, pediatric critical care, and neonatal critical care have taken leadership roles within these national collaboratives and promote research activities in these areas of specialty. The pediatric research efforts are as varied and diverse as the patient population. The critical care team has focused on clinical drug studies, establishing national benchmarks in hospital acquired infections and neonatal/pediatric resuscitation efforts, as well as neurodevelopmental outcomes and interventions. Gastroenterology works with bench science to evaluate the role of cellular immunity and clinical practice, and functions as a key participant in several inflammatory disease studies. Quality research endeavors are being pursued in a rich multidisciplinary team approach. The pediatric department remains involved in projects of wide ranging topics including nephrology, cardiology, surgery, cardiac surgery, international adoption, and infectious diseases.

The Department of Pediatrics continues to promote the development of residents and fellows through structured research education and dedicated research mentors. In 2009, our pediatric residents published or presented a number of journal articles, book chapters, and abstracts at such prestigious pediatric national meetings as the Pediatric Academic Society and American Academy of Pediatric Annual Meeting.

By facilitating research innovation of the next generation of pediatricians, we ensure the continued excellence in specialty health care delivery for the children of the region. The ongoing improvement and growth focusing on translational research and clinical outcomes will continue to help identify Inova Fairfax Hospital for Children as one of the leading Children’s hospital and research centers.

BOOKS, BOOK CHAPTERS, AND JOURNAL ARTICLES

ABSTRACTS AND PRESENTATIONS TO NATIONAL/ INTERNATIONAL MEETINGS:

LECTURE AND FACULTY PRESENTATIONS TO NATIONAL OR INTERNATIONAL MEETINGS

<table>
<thead>
<tr>
<th>Lecture and Faculty Presentations</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Lashkeri, T.</td>
<td>Capnometry as a Predictor of Admissions in Bronchiolitis. SAEM 2009 Annual Meeting, New Orleans, LA.</td>
</tr>
</tbody>
</table>

PEDIATRIC RESEARCH

Page 57 pediatrics continued

27. S Miller. Decision Making, George Washington University Department of Organizational Sciences & Communication, Feb 2009

The Department of Psychiatry has a long tradition of research that focuses on the interface between psychiatry and medical illnesses. Methods include quantitative assessment of various patient populations with specific attention to the personality characteristics common in patients who utilize somatic complaints as a proxy for psychosocial problems, a process termed somatization. The personality variable that captures the essence of this style is termed “alexithymia.” Our research investigates both convergent and divergent validation of the relationship between alexithymia and emotional intelligence, which denotes an individual’s ability to as certain emotional states in others, and understanding groups to effectively lead. Drs. Wise and Sheridan have focused on this area of research for over a decade, leading to the development of the Emotional Intelligence Questionnaire, which is now validated in Japanese, Turkish, and American subjects. Dr. Wise is also involved in the role of personality factors in Hepatitis C patients.

The initial study has been submitted for publication.

Both Drs Wise and Crone have contributed articles on the organization and education of psychiatric fellows in Psychosomatic Medicine. Reviewing research in the field of consultation psychiatry is also an ongoing endeavor. Dr. Wise is the editor of Advances in Psychosomatic Medicine. Both he and Dr. Crone are members of editorial boards of a variety of peer reviewed journals.

An additional area of research is the role of psychological factors in organ transplantation. Dr. Crone has edited a Psychiatric Clinics of North America. Her papers appear both in psychiatric journals and journals related to medical and surgical services.

A final area of research pertains to drug therapy for depression and anxiety. Dr. Wise has contributed several peer reviewed papers in this field.

Both Drs. Wise and Crone have presented their work at National Meetings such as the Academy of Psychosomatic Medicine and the Annual meeting of the American Psychiatric Association.

BOOKS, BOOK CHAPTERS, AND JOURNAL ARTICLES

LECTURES AND FACULTY PRESENTATIONS TO NATIONAL/INTERNATIONAL MEETINGS
The department of trauma services has been through some changes in 2009 and research is no exception. This group has maintained a commitment to research and expanded its horizons. Dr Margaret Griffen has taken over as Chief of Trauma Services and Dr Anne Rizzo has become the Director of Trauma Services Research. We have continued our interest in automotive safety and medical research with motor vehicle crashes through the Crash Injury Research and Engineering Network (CIREN). Several projects from this program have been accepted to national and international meetings for presentation in 2009-2010. Trauma Services is in the process and reapplying for a grant for CIREN. Trauma Services has continued grant funding through several other sources and currently has seven grants through Inova. A HRSA grant for equipment for research support was concluded over the past year and multiple collaborative projects with researchers at George Mason University are underway.

A commitment to resident research education (SRRF) as well as many aspects of research in trauma and general surgery patient care is ongoing. The residents have had several abstracts accepted for presentation at regional, national and international meetings, the American College of Surgeons resident paper competition, the Society for University Surgeons, as examples. We are currently conducting a prospective clinical study involving ICU patients and procalcitonin and hope to have data completed for an abstract submission in 2010. The observation and collective review of a rare general surgical condition encountered several times in 2009 resulted in an abstract acceptance and travel to Australia for one resident.

Continued research in Trauma Services includes projects reviewing elderly trauma patients and the use of Coumadin, radiation exposure during trauma care, dosing of Fentanyl in the trauma patient, and metabolomics evaluation in the trauma patient. A collaboration with the Neurosurgery Orthopedics Division is expanding. A year of changes has brought challenges and gratitude for the efforts of all involved in the year’s great successes.

BOOKS, BOOK CHAPTERS, AND JOURNAL ARTICLES

ABSTRACTS AND PRESENTATIONS TO NATIONAL AND INTERNATIONAL MEETING
EXAMPLES OF RESEARCH PRESENTATIONS
BY MEMBERS OF RESEARCH TEAMS FROM
CENTER FOR LIVER DISEASES
AND
TRANSLATIONAL RESEARCH INSTITUTE

BETTY AND GUY BEATTY CENTER FOR INTEGRATED RESEARCH
INOVA HEALTH SYSTEM
Expression of Genes from JAK/STAT Pathway Are Associated with Factors Predicting Sustained Virologic Response to Treatment of Chronic Hepatitis C (CH-C)

Aybike Birerdinc,1,2 Arian Afendy,1,3 Maria Stepanova,1,3 Issah Younossi,4 Ganiraju Manyam,2,4 Ancha Baranova,2,4 Zobair M. Younossi1,3

1. Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA.
2. Center for the Study of Genomics in Liver Diseases, Molecular and Microbiology Department, George Mason University, Fairfax, VA, USA.
3. Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, VA, USA.

BACKGROUND

• Current standard treatment of CH-C with pegylated interferon-α and ribavirin (PEG-IFN+RBV) achieves sustained virologic response (SVR) in only half of the treated patients.

• Inability to achieve SVR has been strongly associated with a number of factors such as genotype 3, African American (AA) race, cirrhosis, high viral load (HVL), obesity, type 2 diabetes (T2D), age, and lack of early virologic response (EVR), suggesting innate systemic differences in host immune response to treatment.

AIM

• To asses the status of functional pathways based on genes differentially expressed in the pre-treatment peripheral blood mononuclear cells (PBMC) of CH-C patients that can be associated with negative predictors of response.

METHODS

• Pre-treatment blood samples were collected into PAXgene™ RNA tubes.

• CH-C patients scheduled to undergo treatment with PEG-IFN+RBV were included.

• Patients received a full course of PEG-IFN+RBV.

• EVR, and SVR rates were 70% and 41%, respectively.

• From pre-treatment PBMCs, total RNA was extracted, quantified and used for one step RT-PCR to profile 160 miRNAs.

• Expression of miRNAs were normalized with “housekeeping” genes.

• Differentially expressed genes were separated into up and down-regulated gene lists according to the presence or absence of a “predictive factor for SVR” and subjected to KEGG Pathway Painter that allows high-throughput visualization of the pathway-specific changes in expression profiles.

• Genes were consolidated into networks associated with these predictors of response.

RESULTS

• Of 125 CH-C patients enrolled in the study, 88 had complete clinical and gene expression data.

• Pre-treatment gene expression for these CH-C patients show differential expression of 10 genes associated with HCV genotype 1, 46 genes with AA race, 5 genes with HVL, 6 genes with cirrhosis, 34 genes with obesity, 4 genes with T2D, 11 genes with older age, and 18 genes with lack of achieving EVR.

• Using KEGG Pathway Painter, these genes were mapped into their functional pathways.

• This analysis shows that genes associated with core components of the JAK/STAT pathway are pre-activated in CH-C patients who had negative predictors of SVR (Fig. 1).

• In addition TGF-β and Focal Adhesion pathways also contain differentially expressed genes associated with negative predictors of SVR (Fig. 1 & 2).

Table 1. Differentially Expressed Genes Between Cohorts

<table>
<thead>
<tr>
<th>Cohorts</th>
<th>Number of Differentially Expressed Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCV genotype 1</td>
<td>10</td>
</tr>
<tr>
<td>AA race</td>
<td>46</td>
</tr>
<tr>
<td>HVL</td>
<td>5</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>0</td>
</tr>
<tr>
<td>Obesity</td>
<td>54</td>
</tr>
<tr>
<td>T2D</td>
<td>4</td>
</tr>
<tr>
<td>Older Age</td>
<td>11</td>
</tr>
<tr>
<td>Lack of Achieving SVR</td>
<td>18</td>
</tr>
</tbody>
</table>

CONCLUSIONS

• Pathway centered analysis of gene expression profiles from pre-treatment PBMC of CH-C patients points to the JAK/STAT signaling cascade as well as TGF-β pathway as potentially major pathogenetic components responsible for not achieving SVR.

• These pathways may delineate a link between host immune response and lack of achieving SVR.
Proteomic Biomarkers Predicting Histologic Non-alcoholic Steatohepatitis and Fibrosis

Zobair M. Younossi1,3, Ancha Baranova1,2,3, Maria Stepanova1,3, Sandra Page2, Valerie S. Calvert1,2, Arian Afendy1,3, Zachary Goodman4, Lance Liotta2,3,5, Emanuel Petricoin2,3,5

1. Center for Liver Diseases, Inova Fairfax Hospital, USA. 2. Center for the Study of Genomics in Liver Disease, Molecular and Microbiology Department, George Mason University, USA. 3. Betty & Guy Beatty Center for Integrated Research, Inova Health System, USA. 4. Armed Forces Institutes of Pathology, Washington, D.C., USA. 5. Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA.

BACKGROUND

Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease.

NAFLD is the hepatic manifestation of metabolic syndrome and closely associated with visceral obesity.

NAFLD ranges from simple steatosis to non-alcoholic steatohepatitis (NASH).

Only the NASH subtype of NAFLD has been definitively shown to progress.

AIMS

- Develop non-invasive, diagnostic biomarkers for NASH and fibrosis based on changes in the signaling networks of white adipose tissue (WAT), which may participate in the pathogenesis of NASH and fibrosis.

METHODS

- Clinico-demographic data and WAT were collected from 213 patients who had undergone liver biopsy during diagnostic biopsy (Table 1).

- Patients were divided into training and validation cohorts (N=144 and N=69, respectively).

- All liver biopsies were interpreted by a single hepatopathologist.

- NASH was defined as steatosis, lobular inflammation and ballooning degeneration with or without history of chronic alcohol or tobacco.

- Fibrosis was classified into 2 groups: 1) None to minimal fibrosis group: no or only mild portal or periportal fibrosis, 2) Advanced fibrosis: moderate to severe fibrosis (Stage 2) group, at least moderate portal or periportal fibrosis, bridging fibrosis or cirrhosis.

- Each cohort was categorized as with or without NASH, and with or without advanced (Stage 2) fibrosis.

- From WAT, protein extract was extracted and then used for RPA (Reverse Phase Protein Array) analysis, which quantitatively measured the relative phosphorylation of 24 specific signaling molecules.

- Regression models predicting NASH and fibrosis (with these parameters used as dependent variables) were generated by step-wise bi-directional selection using data from the training cohort.

- Predictor variables used from modeling included: 1) clinical and demographic parameters only, 2) Phosphoprotein profiles only, 3) a combination of clinical and phosphoprotin parameters.

RESULTS

Table 1. Clinical data for patients with or without NASH, and with or without severe (Stage 2) fibrosis.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>No NASH</th>
<th>NASH</th>
<th>No or Minim. Fibrosis</th>
<th>Advanced Fibrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>99</td>
<td>98</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>Age</td>
<td>50.18 ± 10.90</td>
<td>54.19 ± 11.00</td>
<td>49.41 ± 10.70</td>
<td>57.61 ± 14.00</td>
</tr>
<tr>
<td>Gender (1 = male)</td>
<td>0.82</td>
<td>0.80</td>
<td>0.79</td>
<td>0.89</td>
</tr>
<tr>
<td>Race (1 = other)</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>BMI</td>
<td>26.34 ± 5.69</td>
<td>24.66 ± 5.57</td>
<td>24.52 ± 5.82</td>
<td>26.34 ± 5.69</td>
</tr>
<tr>
<td>HbA1c</td>
<td>16.4 ± 15.60</td>
<td>15.0 ± 14.60</td>
<td>14.4 ± 15.60</td>
<td>16.4 ± 15.60</td>
</tr>
<tr>
<td>Hypertension</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Alcohol</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>Smoking</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>AST</td>
<td>23.14 ± 11.00</td>
<td>21.67 ± 10.00</td>
<td>20.67 ± 10.00</td>
<td>21.67 ± 10.00</td>
</tr>
<tr>
<td>ALT</td>
<td>38.19 ± 18.95</td>
<td>32.63 ± 13.13</td>
<td>30.78 ± 13.06</td>
<td>42.62 ± 23.41</td>
</tr>
<tr>
<td>albumin</td>
<td>3.88 ± 2.48</td>
<td>3.42 ± 2.17</td>
<td>3.87 ± 2.09</td>
<td>4.12 ± 2.32</td>
</tr>
<tr>
<td>total cholesterol</td>
<td>175.00 ± 44.62</td>
<td>160.00 ± 31.38</td>
<td>165.49 ± 44.70</td>
<td>185.00 ± 51.38</td>
</tr>
<tr>
<td>triglycerides</td>
<td>175.00 ± 57.59</td>
<td>165.00 ± 117.50</td>
<td>173.00 ± 57.59</td>
<td>185.00 ± 51.38</td>
</tr>
</tbody>
</table>

Overall, models predicting NASH were more accurate than those predicting fibrosis.

All models were statistically significant (p<0.05), however they varied in the extent of their sensitivity, specificity, and other measures of accuracy.

For NASH, the model based on phosphoproteins only performed the best, with an AUC of 0.77, sensitivity of 64% and specificity of 56%.

This result was based on a training set that consisted of the training cohort only, and included the parameters: pHEEP1,550 + pHEEP11,010 + pHPR1,590 + pHPR1,900 + pHPR11,000.

The remaining models predicting NASH (i.e. those based on clinical parameters only or clinical and phosphoprotein data combined) also had good AUC values (0.71 and 0.72, respectively) but had lower sensitivity (40% and 50%, respectively) and higher specificity (84% and 67%, respectively).

CONCLUSIONS

- Our results suggest that phosphoproteins could potentially be used in a clinical setting to identify patients with NASH.

- Furthermore, the results shed light on the biological pathways that may be involved in the pathogenesis of NASH.

- NASH was accurately predicted by a model based on four WAT phosphoproteins.

- Advanced fibrosis was well predicted by WAT phosphoproteins, clinical data or both combined.
Differential Expression of miRNA in Patients with Non-Alcoholic Steatohepatitis

David Armistead, Michael Estep, Maria Stepanova, Nila Rafiq, Ganiraju Manyam, Ancha Baranova, Hazem Elariny, Zachary D. Goodman, Zobair M. Younossi

1. Betty and Guy Bratton Center for Integrated Research, Inova Health System, Falls Church, VA, USA.
2. Center for the Study of Genomics in Liver Diseases, Molecular and Microbiology Department, George Mason University, Fairfax, VA, USA.
3. Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, VA, USA.
4. Armed Forces Institutes of Pathology, Washington, DC, USA.

BACKGROUND

- The role of obesity in the development of non-alcoholic fatty liver disease (NAFLD), and its more severe subtype, non-alcoholic steatohepatitis (NASH), is in part due to visceral adipose tissue producing an excess of cytokines and adipokines.
- Micro-RNAs (miRNAs) are 21-23 nucleotide RNAs capable of suppressing expression [Figure 1].
- It is likely that the development of NASH is under direct or indirect miRNA control via the regulation of adipokines and other adipose genes.

AIM

To profile miRNA expression in the visceral adipose tissue of NASH patients.

Table 1: Clinico-demographic and laboratory data

<table>
<thead>
<tr>
<th></th>
<th>NASH (N=12)</th>
<th>Non-NASH/NAFLD (N=12)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yrs</td>
<td>42.2±13.6</td>
<td>40.7±17.4</td>
<td>NS</td>
</tr>
<tr>
<td>Female %</td>
<td>77% (9)</td>
<td>75% (9)</td>
<td>NS</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>31.8±9.5</td>
<td>32.9±10.9</td>
<td>NS</td>
</tr>
<tr>
<td>Waist circumference, cm</td>
<td>103±20.2</td>
<td>105±21.3</td>
<td>NS</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>22±97</td>
<td>22±76</td>
<td>NS</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>33±14.8</td>
<td>35±13.1</td>
<td>NS</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>0.9±0.1</td>
<td>0.8±0.1</td>
<td>NS</td>
</tr>
<tr>
<td>HbA1c %</td>
<td>5.9±0.6</td>
<td>5.9±0.6</td>
<td>NS</td>
</tr>
<tr>
<td>Fasting triglycerides, mg/dL</td>
<td>112±50</td>
<td>111±49</td>
<td>NS</td>
</tr>
<tr>
<td>Fasting glucose, mg/dL</td>
<td>103±30</td>
<td>105±30</td>
<td>NS</td>
</tr>
</tbody>
</table>

RESULTS

- A total of 113 species of miRNA were differentially expressed in the visceral adipose of NASH patients compared to those with non-NASH of type of NAFLD (Fold Change > 1.7, P<0.05).
- Seven differentially expressed miRNA species passed stringent multiple test correction (hsa-mir-135, hsa-mir-29a, hsa-mir-29b-3p, hsa-mir-31, hsa-mir-517a, hsa-mir-671).
- Thirty-five species of miRNA were differentially expressed in the visceral adipose of NASH patients with peribiliary fibrosis versus those with non-NASH, two of which passed multiple test correction (hsa-mir-197 and hsa-mir-39).
- Additionally, the expression of two miRNA species were specifically altered only in the subgroup of patients with both NASH and peribiliary fibrosis, but were not changed when entire NASH non-NASH NAFLD cohorts were compared (hsa-mir-188-5p and hsa-mir-189).

DISCUSSION

- Differentially expressed miRNA species such as hsa-mir-33a and hsa-mir-122 have been previously shown to negatively correlate in the visceral adipose with macrophage infiltration, visceral area, LDL, total cholesterol, free fatty acid levels, and IL-6 concentration.
- Three miRNA species, hsa-mir-1, hsa-mir-21a, and hsa-mir-664 are all involved in genes associated with androgen hormone signaling and are overexpressed miRNA of the only target a total of 10 miRNA species.

METHODS

- Visceral adipose tissue samples were collected from NAFLD patients during bariatric surgery and were cryopreserved.
- All patients had liver biopsy-proven NAFLD and were divided into NASH (n=12) and non-NASH (n=12) groups, by pericellular fibrosis (N=6) vs. no fibrosis (N=6) (Table 1).
- Both groups were similar in their clinical and demographic characteristics.
- Total RNA was extracted from the adipose tissue, reverse transcribed, and profiled using TaqMan Human MicroRNA Arrays (ABT) containing all known human miRNA species.
- Univariate Mann-Whitney comparisons and multivariate regression analysis were performed to compare patients with NASH to matched controls.

Table 2: miRNA Regulated Adipocytokines

<table>
<thead>
<tr>
<th></th>
<th>TMF SF14</th>
<th>TMF SF12</th>
<th>TMF SF14</th>
<th>H.152A</th>
<th>IL-6</th>
<th>CT140PUL</th>
<th>*E FP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
hsa-mir-32 | 102.18 | 115.97 | 102.18 | 115.97 | 102.18 | 115.97 | 102.18 |
|
hsa-mir-15a | 112.52 | 119.84 | 112.52 | 119.84 | 112.52 | 119.84 | 112.52 |

Figure 1: Pre-miRNA is initially processed by Drosha and then exported to the cytoplasm where it is further processed by Dicer. The mature miRNA corresponds exactly to the miRNA precursors in the sequence to regulate expression by either translational inhibition or transcriptional repression.

Figure 2: In addition to the miRNA species studied, several miRNA species demonstrated significant expression at this stage or indirectly affecting inflammatory responses. The expression of miRNA is important for the direct regulation of transcription, miRNA species control the expression of adipocytokine signaling components.

Figure 3: Indirect Regulation of adipocytokines

Figure 4: Analysis and data analysis done via the direct regulation of transcription miRNA species control the expression of adipocytokine signaling components.

Figure 5: miRNA and miRNA-miRNA interactions

CONCLUSIONS

Differential expression of miRNA in the visceral adipose may elucidate pathways important for the pathogenesis of NASH. Furthermore, these data can help develop new targets for treatment of NASH.

Acknowledgments: This study was partly supported by the Liver Disease Outcomes Fund of the Center for Liver Diseases at Inova Fairfax Hospital, and a Great Grant from Inova Health System.

PAGE 68
A Panel of Gene Expression Biomarkers Predicting Sustained Virologic Response (SVR) in Chronic Hepatitis C Patients (CH-C) Treated with Pegylated Interferon Alpha and Ribavirin

Zobair M. Younossi, Ancha Baranova, Maria Stepanova, Arian Afendy, Angela Wheeler, Noreen Hossain, Anita Bakshi, Christopher D. Santini, Christopher L. Signa, Joanne Chan, Ayuko A. Iverson, Sheng-Yung P. Chang

Center for Liver Diseases, Inova Fairfax Hospital, Annandale, VA, USA and Celerad, Alameda, CA.

BACKGROUND
- Chronic hepatitis C (HCV) is the most common cause of chronic liver disease, hepatocellular carcinoma, and the most common indication for liver transplantation. Pegylated interferon-alpha based regimens comprise the standard treatment for chronic hepatitis C.
- In general, 47-54% of patients who have never been previously treated (treatment-naive) achieve sustained virologic response (SVR) with this regimen. This rate is lower for patients with HCV genotype 1 (HCV-G1, ~40%) and highest for patients infected with HCV genotype 2 (HCV-G2, 85-90%).
- The determinants of successful treatment include viral factors (HCV genotype, pre-treatment viral load, viral quasispecies, host factors (obesity, cirrhosis, ethnic background, serum cytokine levels), and treatment factors (prescribing the adequate course of treatment, adherence to the course of treatment, optimal management of side effects).
- In addition to these factors, viral response pattern early during antiviral therapy can predict a response or a lack thereof.

AIM
- The aim of this study was to determine the association between gene expression profiles of 154 human RNA transcripts in peripheral blood mononuclear cells of patients receiving PEG-IFN and RBV and relate these expression profiles to response to the treatment.
- This is part of an on-going effort to develop a panel of gene expression biomarkers that can accurately predict SVR early during the first few weeks of antiviral therapy.

METHODS
- Gene expression comparisons were performed for the expression levels of each gene quantified during each of the five visits (pre-treatment visit and days 1, 7, 28, and 56 of the treatment) by Mann-Whitney tests.
- Total RNA extracts were obtained at different time points, quantified and used for one-step RT-PCR to profile 154 mRNAs reflecting expression of 153 human genes that belong to various IFN-inducible and immune response-related pathways, along with a number of “housekeeping” genes.
- RT-PCR was performed in 384-well format with a duplicate of each 15-μl reaction using Prism (R) 7900HT Sequence Detection System mRNA expression levels were normalized by using six housekeeping genes and a reference RNA. The final [two change signs] CT values of 148 mRNAs were used for statistical analyses.
- Blood samples of mRNA profiling were collected in three PAXgene (TM) RNA blood tubes (PreAnalytix) prior to the initiation of treatment as well as on day 1, day 7, day 28 and day 56 after the initiation of treatment.
- To assess whether the pattern of gene expression in peripheral blood cells is cater to predicting a sustained response to PEG-IFN+RBV treatment we performed a multiple regression analysis with stepwise (bidirectional) selection of variables for all the cohorts and all the cohort visits in each cohort and visit day.
- The sensitivity, specificity, and area under the ROC-curve (AUC) with 95% confidence intervals (CIs) were calculated for each model. The final two change signs CT values of 148 mRNAs were used for statistical analyses. All predictive models were cross-validated using the leave-one-out (LOO) method.

RESULTS
- Of the entire cohort, 51% were naïve and 49% were non-responders to combination therapy. After a standard course of PEG-IFN & RBV, 45% achieved SVR.

<table>
<thead>
<tr>
<th>Treatment Duration</th>
<th>SVR Rate %</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 weeks</td>
<td>45</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Table 1: Characteristics of treatment naïve and previously treated patients

- Using the pre-treatment blood samples, SVR could be predicted by the gene expression levels of STAT6 and SOCS1 [Model p-value <0.002, AUC = 0.718 (CI: 0.671 - 0.906), Sensitivity = 0.708, Specificity = 0.840].

Graph 1A2: Expression Patterns of STAT6 and SOCS1 genes during antiviral treatment by RT-PCR using the combined cohort of subjects.

- After 24 hours of treatment, SVR could be predicted by the gene expression levels of ZAP-70 and BCL1 (Model p-value <0.0004, AUC = 0.808 [CI: 0.671 - 0.906], Sensitivity = 0.708, Specificity = 0.840).

- Interestingly, the pre-treatment models predicting SVR were based mostly at expression levels of various intracellular signaling molecules (see Tables), while both at early and late time points of the treatment SVR was predicted by the expression of the effector genes.

- Performance of the predictive models improved toward later stages of treatment. Before treatment, AUC of LOO validated model was 0.718, while at day 56 similarly calculated AUC was 0.883. Latter models were based on gene expression of IRF5 and PSM2.

CONCLUSION
- The complex patterns of gene expression in lymphocytes taken from the peripheral blood of the patients with HCV infection obtained in the pre-treatment period or shortly after the initiation of treatment could be reduced to small gene subsets allowing for the prediction of SVR.
- After proper validation, these gene sets may provide the basis for the non-invasive diagnostic biomarker that can determine early if a patient treated with PEG-IFN and RBV is likely to achieve SVR.
- By focusing on the full course of treatment on only those patients who have the highest likelihood of achieving SVR, clinicians could potentially reduce side effects and costs associated with these treatment regimens and provide a "personalized approach" to the treatment of patients with chronic hepatitis C.
Gene Expression Associated with Advanced Fibrosis in Patients with Chronic Hepatitis C (CH-C)

Z M. Younossi, A Baranova, M Stepanova, S Schmidt, I Younossi, C Santini, J Chan, S Y Chang
Center for Liver Diseases, Inova Fairfax Hospital, Annandale, VA, USA and Celera, Alameda, CA.

BACKGROUND

- Chronic hepatitis C (HCV) is the most common cause of chronic liver disease, hepatocellular carcinoma, and the most common indication for liver transplantation.
- CH-C patients with advanced fibrosis are at risk for development complications such as hepatocellular carcinoma and hepatic decompensation.
- Factors associated with the occurrence of severe liver fibrosis in CH-C patients remain poorly understood. Expression of the genes in peripheral blood lymphocytes may reflect the severity of liver fibrosis.

AIM

- The aim of this study was to determine the association between gene expression profiles of 154 human RNA transcripts in peripheral blood mononuclear cells of patients on various stages of treatment and relate these expressions profiles to the presence of the liver fibrosis.
- This is part of an on-going effort to develop a panel of gene expression biomarkers that can accurately predict the extent of the chronic liver disease without the need for liver biopsy.

METHODS

- Blood samples for mRNA profiling were collected in three PAXgene® RNA blood tubes (PreAnalytx) prior to the initiation of treatment.
- Total RNA extracts were obtained at different time points, quantified, and used for one step RT-PCR to profile 154 mRNAs reflecting expression of 153 human genes that belong to various IRN-inducible and immune response related pathways along with a number of "housekeeping" genes.
- RT-PCR was performed in 384-well format with a duplicate of each 15-ul reaction using Prism® 7900HT Sequence Detection System mRNA expression levels were normalized by using six housekeeping genes and a reference RNA. The final [two change signs] CT values of 148 mRNAs were used for statistical analyses.
- Gene expression comparisons were performed for the expression levels of each gene by Mann-Whitney tests.
- To assess whether the pattern of gene expression in peripheral blood cells is better to predicting fibrosis, we performed a multiple regression analysis with stepwise (bio-directional) selection of variables for all the cohorts and all the comparisons in each cohort and visit day.
- The sensitivity, specificity, and area under the ROC-curve (AUC) with 95% confidence intervals (CIs) were calculated for the model.

RESULTS

- 57 CH-C patients who were not receiving any HCV treatment were included. According to the liver biopsies, 30 patients had advanced fibrosis (p-value <0.05)

- Levels of expression for genes IFITM2, GBP2, PSMB6, PSME1, PSME2, IL15, NUBI were significantly decreased in CH-C patients with advanced fibrosis (p-value <0.05).

- Interestingly, 4 out of 7 of these mRNAs encode for various parts of immunoproteasome that processes class I MHC peptides (NUBI, PSMB6, PSME1, and PSME2) emphasizing the role of antigenic response in the development of hepatic fibrosis in CH-C.

- Additionally, in multivariate analysis, advanced fibrosis could be predicted by IL15 gene expression in the peripheral blood lymphocytes [Model p-value <0.0032, AUC = 0.723 (95%CI: 0.589 - 0.834)].

CONCLUSION

- A gene expression biomarker panel can predict advanced fibrosis in CH-C patients. After further validation, this biomarker can become useful in the management of patients with CH-C.
Profiling and Validation of Reference Genes in the Visceral Adipose Tissue (VAT)

Rohini Mehta, Aybike Birerdin, Noreen Hossain, Amir Moazee, Vikas Chandhoke, Ancha Baranova, Zobair M. Younossi

1. Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA.
2. Center for the Study of Genomics in Liver Diseases, Molecular and Microbiology Department, George Mason University, Fairfax, VA, USA.
3. Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, VA, USA.

BACKGROUND

- VAT plays a central role in the pathogenesis of obesity and metabolic syndrome.
- There is a need for better understanding the molecular circuitry governing VAT functions.
- This warrants a thorough investigation of the VAT transcriptome.
- The qPCR method is a highly sensitive and specific technique for the measurement of gene expression; however, it is intrinsically dependent on the accurate selection of reference genes for data normalization.

AIM

- Our aim was to evaluate the most common reference genes and determine their ability to serve as reference genes for qPCR profiling of human VAT.

METHODS

- VAT samples were collected from obese patients (n=5) and lean patients undergoing abdominal surgeries (N=4).
- Total mRNA was extracted and used to determine the expression levels of 8 commonly used reference genes, encoding for:
 - 18S RNA, beta-2-microglobulin(B2M),
 - glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
 - hydroxymethyl-Hilane synthase(HMBS),
 - hypoxanthine phosphoribosyl-transferase 1(HPR1T1),
 - ubiquitin (UBC),
 - beta-actin(ACTB),
 - tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,
 - zeta polypeptide(YWHAZ)
 - RNA polymerase II polypeptide(RP II).
- The qPCR experiments were performed in triplicates.
- Data were analyzed and compared using three publicly available reference gene validation tools: GeNorm, BestKeeper, and NormFinder.

RESULTS

- Despite the differences in the algorithms used for each software:
 - ACTB (expression stability coefficient M=0.239)
 - RP II (M=0.239) followed by GAPDH(M= 0.378)
 - HPRT1(M= 0.295) were ranked highest by all three analysis software.
- On the other hand, 18S RNA, most commonly used as a qPCR reference gene, was shown to be highly variable in VAT.

Table 1. Differentially Expressed Genes Between Cohorts

<table>
<thead>
<tr>
<th>Gene Names</th>
<th>GeNorm (M)</th>
<th>Best Keeper (σ)</th>
<th>NormFinder (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTB</td>
<td>0.239</td>
<td>0.981</td>
<td>0.222</td>
</tr>
<tr>
<td>RPII</td>
<td>0.239</td>
<td>0.975</td>
<td>0.244</td>
</tr>
<tr>
<td>HPRT1</td>
<td>0.295</td>
<td>0.966</td>
<td>0.193</td>
</tr>
<tr>
<td>GAPDH</td>
<td>0.378</td>
<td>0.915</td>
<td>0.130</td>
</tr>
<tr>
<td>B2M</td>
<td>0.421</td>
<td>0.861</td>
<td>0.236</td>
</tr>
<tr>
<td>UBC</td>
<td>0.448</td>
<td>0.816</td>
<td>0.207</td>
</tr>
<tr>
<td>YWHAZ</td>
<td>0.502</td>
<td>0.681</td>
<td>0.306</td>
</tr>
<tr>
<td>18S</td>
<td>0.681</td>
<td>0.681</td>
<td>0.344</td>
</tr>
</tbody>
</table>

CONCLUSIONS

- This study shows the variability in gene expression of commonly used housekeeping genes and suggest ACTB and RP II genes as the recommended reference genes for studies of VAT.

P A G E 7 4
Differential Gene Expression Profiling of Brown Adipose Tissue (BAT) Specific Genes in Visceral Adipose Tissue of Lean and Obese Individuals

Aybike Birerdinc, Rohini Mehta, Noreen Hossain, Yaqub Baraki, Hazem A Elariny, Ancha Baranova, Vikas Chandhoke, Zobair M. Younossi

1. Betty and Guy Beatty Center for Integrative Research, Inova Health System, Falls Church, VA, USA.
2. Center for the Study of Genomics in Liver Diseases, Molecular and Microbiology Department, George Mason University, Fairfax, VA, USA.
3. Center for Liver Diseases, Inova Health System, Falls Church, VA, USA.

BACKGROUND

• The epidemic of obesity and its associated disorders in the US are expected to become a major cause of mortality, morbidity and resource utilization.
• Significant efforts have been made to understand the properties and functions of adipose tissue and its contribution to fat metabolism.
• BAT is predominantly seen in newborns and is associated with thermogenesis.
• Recently, a role for BAT in adults and their body weight homeostasis has been suggested.

AIM

• The aim of this study was to detect and to quantify expression levels of BAT specific genes in the visceral adipose of lean and obese patients.

METHODS

• Visceral adipose tissue samples were collected from very obese patients undergoing bariatric surgery (n=5) and lean patients undergoing non-bariatric abdominal surgeries (N=4).
• Each specimen was snap frozen in liquid nitrogen and stored at -80.
• From each sample, total mRNA was extracted; the expression levels of the following BAT related genes were evaluated in triplicates by qPCR.

 UCP1 PGC-1α
 PPARD Twist-1
 PRDM16 SIRT 2
 SIRT 3 NAMPT

• Univariate Mann-Whitney comparisons were performed.

RESULTS

• The expression levels of UCP, PGC, Twist and SIRT3 were significantly higher (P < 0.015) in adipose samples of lean patients as compared to that of obese patients.
• Similar trends were observed for the visfatin encoding gene NAMPT (fold difference = 1.95, p< 0.009).
• However, there were no statistically significant differences in the expression levels of PPARD and SIRT12 in visceral adipose samples of lean and obese subjects.

Table 1. Gene expression fold changes as compared to visceral obese

<table>
<thead>
<tr>
<th>Gene</th>
<th>Lean (fold change)</th>
<th>Obese (fold change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCP1</td>
<td>3.23 (P<0.015)</td>
<td>1.10</td>
</tr>
<tr>
<td>PGC-1a</td>
<td>2.55 (P<0.015)</td>
<td>1.20</td>
</tr>
<tr>
<td>PPARD</td>
<td>1.45 (P<0.015)</td>
<td>0.90</td>
</tr>
<tr>
<td>Twist-1</td>
<td>1.32 (P<0.015)</td>
<td>0.80</td>
</tr>
<tr>
<td>PRDM16</td>
<td>1.75 (P<0.015)</td>
<td>0.50</td>
</tr>
<tr>
<td>SIRT 2</td>
<td>2.05 (P<0.015)</td>
<td>1.20</td>
</tr>
<tr>
<td>SIRT 3</td>
<td>1.50 (P<0.015)</td>
<td>1.00</td>
</tr>
<tr>
<td>NAMPT</td>
<td>1.95 (P<0.009)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

CONCLUSIONS

• This pilot study points to an increased expression of BAT related genes in lean visceral adipose as compared to obese visceral adipose.
• This data suggest a higher level of BAT in the visceral adipose tissue of lean individuals, potentially indicating a relationship between BAT and obesity.

After confirmation in a larger study, therapeutic strategies can be developed to target BAT and provide an alternative for treatment of obesity.
The Impact of Laparoscopic Bariatric Surgery on Components of Metabolic Syndrome

ChunHong Bai, Clare Nugent, Hazem Elariny, Mariam Afendy, Angela Wheeler, Arian Afendy, Michael Garone Jr., Caitlin Quigley, Priya Gopalakrishnan, Zobair M. Younossi.

Translational Research Institute, Inova Health System, Falls Church, Virginia.

BACKGROUND

• Metabolic Syndrome (MS) and Non-Alcoholic Fatty Liver Disease (NAFLD) are commonly found in morbidly obese patients undergoing bariatric surgery.

AIM

• This study aims to assess the impact of bariatric surgery on the resolution of MS and NAFLD.

METHODS

• Two hundred and sixty three patients who underwent bariatric surgery were included.
• Of these, two hundred and thirty six had at least one follow-up.
• Clinical, demographic and histologic data were available at the time of surgery and for follow-up after surgery.
• MS was defined according to ATP III (The Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults).

RESULTS

• The majority (98.5%) of the surgical procedures were performed laparoscopically.
• Mean weight loss after surgery was 33.7 +/- 20.1 kg after malabsorptive surgery (follow-up period 306 +/- 290 days) and 28.3 +/- 14.1 kg after combination surgery (follow-up period 281 +/- 239 days).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Categorical variables: Percent, %</th>
<th>Numeric variables: Mean +/- SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>44.0 +/- 11.5</td>
<td>44.5 +/- 11.5</td>
</tr>
<tr>
<td>Male, %</td>
<td>21.8</td>
<td>27.8</td>
</tr>
<tr>
<td>Diabetes, %</td>
<td>30.1</td>
<td>30.1</td>
</tr>
<tr>
<td>Metabolic Syndrome, %</td>
<td>30.3</td>
<td>34.1</td>
</tr>
<tr>
<td>Components of Metabolic Syndrome (ATP III criteria), %</td>
<td>50.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Waist circumference</td>
<td>41.5</td>
<td>41.5</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>44.8</td>
<td>45.7</td>
</tr>
<tr>
<td>Fasting triglycerides (mg/dL)</td>
<td>39.9</td>
<td>56.5</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>38.6</td>
<td>58.3</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>32.7</td>
<td>33.7</td>
</tr>
<tr>
<td>Fasting glucose (mg/dL)</td>
<td>49.4</td>
<td>49.4</td>
</tr>
<tr>
<td>ALT</td>
<td>46.9</td>
<td>72.1</td>
</tr>
<tr>
<td>AST</td>
<td>75.0</td>
<td>150.0</td>
</tr>
</tbody>
</table>

Table 1: Baseline Demographic and Clinical Characteristics

• The amount of weight loss post-surgery was not significantly different among the three types of bariatric surgical procedures (p=.352).
• Regardless of the type of bariatric surgery, significant improvements were noted in:
 - DM (p-values from <0.0001 to 0.0005)
 - MS (p-values from <0.0001 to 0.01)
 - Waist circumference (p-values <0.0001)
 - BMI (p-values <0.0001)
 - Fasting serum triglycerides (p-value <0.0001 to 0.001)
 - Fasting serum glucose (p<0.0001, except for the combination surgery)

• Additionally, a significant improvement in ALT/AST ratio (p=.0002) was noted only in those who underwent restrictive surgery.
• Multivariate analysis showed that patients who underwent a malabsorptive bariatric procedure experienced greater percent weight loss of excess body weight (PWLEBW) than patients who underwent restrictive procedure (p-value = 0.0451).
• PWLEBW increased with longer post-operative follow-up (p-value <0.0001).

CONCLUSIONS

• Weight loss after bariatric surgery is associated with a significant improvement in Metabolic Syndrome (MS) and factors associated with Non-Alcoholic Fatty Liver Disease (NAFLD).
OUTCOMES RESEARCH PROGRAM

BETTY AND GUY BEATTY CENTER FOR INTEGRATED RESEARCH
INOVA HEALTH SYSTEM
Relationship Between Chronic Sleep Restriction and Health-Related Quality of Life

Ali A. Weinstein1,3, Lynn Gerbor1,3, Juhi Moon1,2, Jillian Kallman1,2, Yun Fang1,2, Patrice Winton1,3, Dilana Moore4, Zobair M. Younossi1,2

1. Outcomes Research Program, Inova Fairfax Hospital, Falls Church, VA, USA 2. Betty & Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA 3. George Mason University, Fairfax, Virginia, USA 4. Inova Blood Donor Services, Inova Health System, Falls Church, VA, USA

Background

• Sleep is thought to be closely related to the regulation of emotional and physical well-being.

• In the general population, chronic sleep restriction is a very common behavior that has been rarely studied for its effect on emotional and physical well-being.

• Experimental sleep deprivation studies have identified a relationship between lack of sleep and emotional/physical well-being.

• However, these studies usually have severely restricted sleep.

• The relationship between less sleep and emotional/physical well-being in the general population has not been as thoroughly investigated.

Aim

• Examine the relationship between average number of hours slept per night and emotional and physical well-being, as measured by health-related quality of life (HRQL).

Methods

• Participants were recruited from a sample of blood donors in a community setting.

• These individuals filled in questionnaires assessing the average number of hours of sleep per night and a validated measure of HRQL that assesses overall HRQL score and the following domains:
 • Emotional Functioning (EF)
 • Systemic Symptoms (SS)
 • Worry (WO)
 • Activity (AC)

Results

• One hundred Blood donors (age: 52 ± 15 years; 66% male) were recruited in a community setting.

• In this sample, the individuals slept an average of 7.0 ± 1.1 hours per night.

• Statistically significant Spearman’s correlations were present between number of hours of sleep and EF (rs=0.36; p=0.001), SS (rs=0.23; p=0.02), WO (rs=0.31; p=0.003), and overall HRQL score (rs=0.28; p=0.005).

• The relationships indicated that the lower the number of hours of sleep, the more impaired scores on the CLDQ.

• The correlations remained statistically significant after controlling for age, gender, and body-mass index.

Table 1. Demographics and HRQL

<table>
<thead>
<tr>
<th></th>
<th>Mean, SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # Subjects (N)</td>
<td>100</td>
</tr>
<tr>
<td>Age</td>
<td>52.2 ± 14.8</td>
</tr>
<tr>
<td>Gender (% male)</td>
<td>66%</td>
</tr>
<tr>
<td>Body Mass Index (BMI)</td>
<td>27.7 ± 5.1</td>
</tr>
<tr>
<td>Sleep (Hours per night)</td>
<td>7.0 ± 1.1</td>
</tr>
<tr>
<td>Systemic Symptoms (SS)</td>
<td>5.8 ± 0.9</td>
</tr>
<tr>
<td>Emotional Functioning (EF)</td>
<td>6.1 ± 0.6</td>
</tr>
<tr>
<td>Activity Score (AS)</td>
<td>6.7 ± 0.5</td>
</tr>
<tr>
<td>Worry (WO)</td>
<td>6.8 ± 0.2</td>
</tr>
<tr>
<td>Total HRQL Score</td>
<td>6.3 ± 0.4</td>
</tr>
</tbody>
</table>

Table 2. Sleep & HRQL Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>Spearman Correlations</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic Symptoms (SS)</td>
<td>0.23</td>
<td>0.02</td>
</tr>
<tr>
<td>Emotional Functioning (EF)</td>
<td>0.36</td>
<td><0.001</td>
</tr>
<tr>
<td>Activity Score (AS)</td>
<td>0.03</td>
<td>0.79</td>
</tr>
<tr>
<td>Worry (WO)</td>
<td>0.31</td>
<td>0.002</td>
</tr>
<tr>
<td>Total HRQL Score</td>
<td>0.28</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Table 3. Adjusted Sleep & HRQL Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>Spearman Correlations</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic Symptoms (SS)</td>
<td>0.23</td>
<td>0.02</td>
</tr>
<tr>
<td>Emotional Functioning (EF)</td>
<td>0.43</td>
<td><0.001</td>
</tr>
<tr>
<td>Activity Score (AS)</td>
<td>0.07</td>
<td>0.49</td>
</tr>
<tr>
<td>Worry (WO)</td>
<td>0.33</td>
<td>0.004</td>
</tr>
<tr>
<td>Total HRQL Score</td>
<td>0.32</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Conclusions

• This investigation demonstrates that a relationship exists between the average number of hours slept per night and HRQL (especially EF).

• The participants in the current investigation may not have adequate personal resources, including sufficient sleep, to self-regulate their EF.
Activity Level in Patients Undergoing Bariatric Surgery

Michael Garone Jr., Jillian Kallman, Ruben D. Aquino, Yun Fang, Phuong Le, Hazem A. Elariny, Zobair M. Younossi

1. Center for Liver Diseases, Inova Fairfax Hospital, Annandale, VA, USA. 2. Betty & Guy Beatty Center for Integrated Research, Inova Fairfax Hospital, Annandale, VA, USA.

Background

- Various types of bariatric surgery are being used for management of morbid obesity.
- Impact of bariatric surgery on the activity level of patients has not been fully studied.

Aim

- To assess the impact of weight loss after surgery on patients’ activity level.

Methods

- Patients who had undergone bariatric surgery for whom baseline and follow-up clinical data were selected.
- Each patient was sent a copy of the Human Activity Profile, a well-validated and reliable self-report measure of activity level that measures maximal activity level (MAS), and adjusted activity level (AAS).
- MAS score measures the maximal level of activity an individual can accomplish.
- AAS measures the level of activity engaged on a daily basis.
- Bariatric surgery patients were compared to BMI-matched controls without bariatric surgery.
- Comparisons between groups were made using Kruskal-Wallis, Wilcoxon two-sample tests, Pearson correlations, and chi-square homogeneity tests.

Results

- A total of 84 patients were included in this study (72.1% female, age 51.6 ± 10.7, 92.9% white, and 4.7% African American).
- All cases and controls had liver biopsies showing non-alcoholic fatty liver disease (NAFLD).
- Of the entire cohort, 53 patients had undergone bariatric surgery (12 restrictive, 6 malabsorptive, 33 combined restrictive-malabsorptive therapy).
- For the bariatric surgery group, pre-surgical body mass index (BMI) was 47.1 ± 6.1.
- After 2.8 ± 1.4 years of follow-up, their post-surgery BMI after weight loss was reduced to 30.9 ± 6.7.
- At follow-up, there were 77.3% fewer cases of hyperlipidemia (HYP), 85.7% fewer type 2 diabetics (DM), 46.2% fewer cases of hypertension (HTN) and 76.6% fewer cases of metabolic syndrome (MS) as compared to the time of surgery.
- For bariatric patients, AAS and MAS scores were 71 ± 13 and 77 ± 10.

Table 1. Clinico-demographic Information Pre & Post Bariatric Surgery

<table>
<thead>
<tr>
<th></th>
<th>Pre-Bariatric Surgery</th>
<th>Post-Bariatric Surgery</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>47.1 ± 6.1</td>
<td>30.9 ± 6.7</td>
<td><0.0001</td>
</tr>
<tr>
<td>Waist</td>
<td>78.0 ± 39.3</td>
<td>68.7 ± 38.6</td>
<td>0.0567</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>131.2 ± 23.5</td>
<td>87.6 ± 21.3</td>
<td><0.0001</td>
</tr>
<tr>
<td>ALT</td>
<td>33.6 ± 26.1</td>
<td>33.2 ± 26.3</td>
<td>0.7789</td>
</tr>
<tr>
<td>AST</td>
<td>26.7 ± 17.7</td>
<td>26.2 ± 12.9</td>
<td>0.8326</td>
</tr>
<tr>
<td>Total Cholesterol</td>
<td>192.4 ± 50.2</td>
<td>168.4 ± 44.0</td>
<td>0.0146</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>14</td>
<td>2</td>
<td>0.0005</td>
</tr>
<tr>
<td>Hypertension</td>
<td>26</td>
<td>14</td>
<td>0.0005</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>22</td>
<td>5</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Table 2. Activity Level Comparisons Between Post-Bariatric Surgery Patients & BMI Matched Controls

<table>
<thead>
<tr>
<th></th>
<th>Post-Bariatric Surgery</th>
<th>No Bariatric Surgery</th>
<th>Chi-Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>52.4 ± 10.9</td>
<td>50.3 ± 10.5</td>
<td>0.0067</td>
</tr>
<tr>
<td>BMI</td>
<td>30.9 ± 6.7</td>
<td>28.5 ± 5.5</td>
<td>0.2039</td>
</tr>
<tr>
<td>Raw MAS Score</td>
<td>76.5 ± 3.9</td>
<td>78.2 ± 12.3</td>
<td>0.1866</td>
</tr>
<tr>
<td>Raw AAS Score</td>
<td>716 ± 13.1</td>
<td>746 ± 15.4</td>
<td>0.2589</td>
</tr>
<tr>
<td>AST</td>
<td>26.2 ± 12.5</td>
<td>43.9 ± 21.3</td>
<td><0.0001</td>
</tr>
<tr>
<td>ALT</td>
<td>332.2 ± 26.3</td>
<td>60.9 ± 35.8</td>
<td><0.0001</td>
</tr>
<tr>
<td>Total Cholesterol</td>
<td>186.4 ± 44.0</td>
<td>196.7 ± 37.3</td>
<td>0.0090</td>
</tr>
</tbody>
</table>

Conclusions

- After significant weight loss post bariatric surgery, activity level of these patients becomes similar to weight-matched controls.
- Scores for both post bariatric surgery and non-bariatric surgery groups showed that they were moderately active within the normal range of functioning.
Psychiatric Disorders in Patients Undergoing Bariatric Surgery

Maria Stopanova, Angela Wheeler, Jillian Kallman, Husam Alathari, Hazem Elariny, Yun Fang, Noreen Hossain, Nila Rafiq, Zobair M. Younossi

1. Center for Liver Diseases, Inova Fairfax Hospital, Annandale, VA, USA. 2. Betty & Guy Beatty Center for Integrated Research, Inova Fairfax Hospital, Annandale, VA, USA.

Results

- At baseline, a history of psychiatric disorder was documented in 214 (57%) patients (depression in 35% of patients, anxiety in 6% and other psychiatric diagnosis in 22%).
- Patients with a history of depression were older (p=0.0021), more likely to report history of drinking alcohol at baseline (p=0.0434) or 1-year after surgery (p=0.0302), more likely to be female (p=0.0079) and Caucasian (p=0.0096) than patients without psychiatric history.

Psychiatric Diagnosis P-values (Compared to No Psychiatric Diagnosis Cohort)

<table>
<thead>
<tr>
<th>Age</th>
<th>Depression</th>
<th>Anxiety</th>
<th>Alcohol Abuse</th>
<th>Eating Disorder</th>
<th>Schizophrenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.692</td>
<td>0.473</td>
<td>0.612</td>
<td>0.517</td>
<td>0.617</td>
<td>0.315</td>
</tr>
<tr>
<td>Gender</td>
<td>0.036</td>
<td>0.038</td>
<td>0.036</td>
<td>0.038</td>
<td>0.036</td>
</tr>
<tr>
<td>Race</td>
<td>0.036</td>
<td>0.038</td>
<td>0.036</td>
<td>0.038</td>
<td>0.036</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.353</td>
<td>0.446</td>
<td>0.711</td>
<td>0.711</td>
<td>0.801</td>
</tr>
<tr>
<td>Asian</td>
<td>0.271</td>
<td>0.648</td>
<td>0.662</td>
<td>0.662</td>
<td>0.568</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>0.235</td>
<td>0.019</td>
<td>0.391</td>
<td>0.391</td>
<td>0.391</td>
</tr>
<tr>
<td>Hypertension</td>
<td>0.012</td>
<td>0.345</td>
<td>0.563</td>
<td>0.563</td>
<td>0.563</td>
</tr>
<tr>
<td>Obesity</td>
<td>0.044</td>
<td>0.046</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Waist</td>
<td>0.214</td>
<td>0.529</td>
<td>0.313</td>
<td>0.313</td>
<td>0.313</td>
</tr>
<tr>
<td>Blood Pressure</td>
<td>0.214</td>
<td>0.529</td>
<td>0.313</td>
<td>0.313</td>
<td>0.313</td>
</tr>
</tbody>
</table>

Conclusions

- Patients undergoing bariatric surgery seem to have high prevalence of depression and anxiety.
- Although excessive alcohol use (>2 drinks/day) is rare, alcohol consumption seems to be associated with psychiatric disorders and continues after surgery.
Stabilization Chemistry for Universal Application to Protein, RNA, DNA and Morphology Preservation

Virginia Espina1, Claudius Mueller1, Alex Reeder1, Michael Helby1, Stacey Banks2, Barbara Merritt2, Lucia Pastore2, Kirsten Edmiston2, Emanuel F. Petricoin III1, Lance A. Uitto1

1George Mason University, Manassas, VA 2Inova Fairfax Hospital, Falls Church, VA

Excised Tissue is Alive!

It is a well known but under-appreciated fact that tissue stays alive and reactive during the immediate ex vivo period. Thus, changes in protein or nucleic acid amount and modification will occur that are purely based on the tissue’s response to stress, lack of oxygen, acids/bases. We have previously shown that tissue phosphorylation in excised tissue can change in a matter of minutes [1,2].

Stabilization of RNA Integrity

Preservation of Morphology

Stabilization of Protein Phosphorylation

Compatibility with Histochemistry

Conclusions

There is an urgent need to develop a one-step preservation chemistry that will maintain cellular and tissue morphology, as well as prevent fluctuations or degradation of tissue biomarkers, post excision. To date the best method of tissue preservation is snap freezing in liquid nitrogen. However, in a standard clinical setting this is often not feasible. To address this need we are developing a fixation chemistry that preserves proteins, RNA and DNA and their respective modifications, as well as permitting cryopreservation while maintaining cellular morphology for pathological diagnosis.

While further development is necessary our current multipurpose chemistry is superior in stabilizing phosphorylating proteins while preserving good morphology.

While further enhancing preservation properties in these areas we are currently also focusing on effective fixation of nucleic acids. Thus, we hope that in the near future, our fixative can be a starting point for processing all pathologic specimens into a standard paraffin block while preserving, and archiving, all classes of macromolecules for molecular profiling.

References & Acknowledgements

This work was supported by an R01 grant (NCI#5R01CA10971) from the National Cancer Institute (NCI) and the Robert Wood Johnson Foundation (RWJF) Grant #41406.
Discovery of DCIS progenitor cells: the target for a new therapeutic trial

PINC Trial: Preventing Invasive breast Neoplasia with Chloroquine

Virginia Espíndola, Rosa Gallagher, Steacey Banks, Lucia Pastore, Brian D. Mariani, Lance A. Lieffler, Kirsten Edmonston

George Mason University, Manassas, VA; Inova Fairfax Hospital, Falls Church, VA; Science & HP Institute, Fairfax, VA

Abstract

A majority of, if not all, invasive breast cancers progresses from a DCIS precursor stage. We have a clinical trial underway for the evaluation of a unique therapeutic strategy for Human Breast Ductal Carcinoma In Situ (DCIS). Our novel technologic approach allows us to monitor therapy at the level of molecular signaling and biologic invasive function of the living DCIS cells ex vivo, pre and post treatment.

Our DCIS therapeutic target is the autophagy pathway, and the treatment agent is oral Aralen (chloroquine phosphate). The choice of this pathway inhibitor is based on our new data using living human DCIS cells grown in organoid culture. These data support the hypothesis that the autophagy pathway may be a key regulator of emergence and epithelial cell survival in the hypoxic DCIS ductal niche. These findings reveal, for the first time, a survival strategy that individual patient’s fresh human DCIS neoplastic cells, when removed from the duct niche, already possess the full capacity for functional ex vivo tissue invasion. We have propagated and characterized the invasive DCIS epithelial neoplastic cells possessing progenitor cell characteristics. Protein array analysis of 48 cell signaling kinase endpoints, representing stem cell markers, autophagy, adhesion, invasion, and proinvasive pathways, revealed a set of activated signaling pathways, consistent with a progenitor character. Full genome molecular cytogenetics studies (Illumina SNP microarrays) with a portrayal of human DCIS tissue donors verified that invasive DCIS cells with progenitor cell features (3D-pseudodialized and spherical formations) show cytokine abnormality compared to the patient’s matched normal breast tissue.

Our trial examines the safety and effectiveness of Aralen, alone or in combination with tamoxifen, administered for a 3 month period to patients with low, intermediate, or high grade DCIS. Patients with high grade ER+ DCIS receive tamoxifen plus Aralen. ER- patients receive Aralen alone. Patients with low grade ER+ DCIS receive tamoxifen. At the conclusion of the 3 month treatment period, all patients receive standard of care surgical therapy. MRI is performed before and after the treatment period. "Effectiveness" in this accelerated trial is measured at the molecular level. Using our unique protein macroarray technology, the activated state of 100 proteins associated with autophagy, hypoxia, apoptosis, angiogenesis, invasion, and cell cycle pathways are measured before and after therapy within the microdissected epithelial and stromal compartments. In parallel, DCIS living organoids are harvested and scored for a) invasive potential in human breast stromal ex vivo, b) progenitor cell yield and growth, and c) growth in NOD-SCID mice xenotransplantation. Full genome molecular cytogenetics is conducted before and after therapy.

Conclusion

The unique accelerated study design provides immediate molecular and biologic feedback about the candidate strategies aimed at eradicating intraductal neoplastic cells within breast pre-invasive lesions. This trial, if successful, can support a future strategy under which a woman would be treated for 3 months with a single agent (Aralen), that would support or biologically eradicate, any occult or overt pre-invasive lesion. A relatively non-toxic systemic therapy that effectively treats DCIS could significantly reduce the risk of subsequent development of breast cancer in the same patient.

Autophagy is linked to the survival and invasion of pre-malignant cancer cells (Cancer Cell 2016;30(4):678-89)

Chloroquine disrupts autophagy

Methods for Pre-Clinical Data

Human DCIS cultures contain pre-existing carcinoma precursor cells

We have developed a model system for reliably revealing cytogenetically abnormal, invasive progenitor cells from fresh human DCIS which we are able to propagate in culture.

1. Using this model system we have identified the autophagy pathway as a therapeutic target for DCIS. Chloroquine, an inhibitor of autophagy, suppresses the growth and survival of DCIS progenitor cells.

2. In vitro models of chloroquine treatment confirm our hypothesis that autophagy is necessary for survival of intra-ductal DCIS cells and provides justification for this PINC trial.

We believe that DCIS progenitor cells are the target for chloroquine and PINC trial.

References

Overview

The objective of this project is to utilize a unique study set of human clinical specimen from patients with and without atrial fibrillation (AF) for the identification of differentially expressed mitochondrial-associated proteins that could ultimately serve as biomarkers for AF. Our research strategy is based on a comparative mass spectrometric (MS) analysis and overexpression phase protein microarray (PPMA) assay of mitochondrial proteins fractions isolated from samples of right atrial tissue obtained from AF patients and non-AF control subjects. Identification of differentially abundant proteins determined by global MS spectral counting-based comparative analyses were validated using targeted PPMA assays. The use of right atrial tissue in combination with the mitoDIA approach, respectively, constitute a new and effective strategy for discovery of biomarkers of a variety of human diseases such as AF.

Introduction

AF is the most common of sustained arrhythmias in western countries, with an incidence of 1.2% in the United States. AF incidence rises with age, and 1 in 4 patients older than 75 years old have AF. AF is associated with a significant increase in risk of stroke, heart failure, and death. The prevalence of AF is high among the elderly, and the risk increases with age. Approximately 5.6 million Americans are affected with AF, with an estimated 5 million patients by 2050. Multiple studies suggest that AF is a relatively new and a significant risk factor for stroke, heart failure, and death. It is a heterogenous disease process with a complex pathophysiology. Understanding the pathophysiology of AF and the development of effective treatments are crucial to improving outcomes for patients with AF.

Methods

Sample and Mitochondrial Enrichment: Right atrial tissue samples were acquired from 16 patients undergoing the Maze procedure and from 33 patients undergoing another type of cardiac surgery. The tissue samples were flash frozen in liquid nitrogen and stored in a -80°C freezer. Mitochondrial proteins were purified using a BioWhittaker Mitochondrial Isolation kit (BioWhittaker, Walkersville, MD). Mitochondrial proteins were isolated using a conventional 110,000 g spin. The isolated mitochondrial proteins were resuspended in PBS and sonicated using a Sonicator to ensure complete lysis.

Results

Candidate Biomarker Discovery: Approximately 90% of the proteins identified by MS were differentially abundant in all the samples analyzed. Approximately 5% of the identified proteins were identified to be differentially expressed compared to the control group. The remaining 10% were identified to be more abundant in the AF right atrial tissue samples compared to the non-AF right atrial tissue samples. A subset of these proteins and associated spectral counts are shown in Table 1.

Table 1. Candidate Biomarker Discovery Results

<table>
<thead>
<tr>
<th>Protein</th>
<th>MASCOT Score</th>
<th>Peptide Count</th>
<th>Spectral Count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discussion

Development of AF has been reported to be associated with changes in mitochondrial function. Mitochondrial dysfunction has been implicated in the pathogenesis of AF. Mitochondrial dysfunction has been associated with increased oxidative stress and decreased ATP production. Mitochondrial biogenesis, including the transcriptional regulation of genes encoding mitochondrial proteins, has been shown to be altered in AF. These findings suggest that mitochondrial dysfunction may play a role in the pathogenesis of AF.

Literature Cited

Presented at Meeting of The Association for Mass Spectrometry: Applications to the Clinical Laboratory, Inc. 2010
Late Stroke/TIA and Major Bleeding Events after Surgical Ablation of AF: Is There a Role for the CHADS Score?

Niv Ad, MD; Linda Henry, PhD, RN; Sharon Hunt, MBA; Karen Schlauch, PhD
Inova Heart & Vascular Institute, Falls Church, Virginia

INTRODUCTION

The Heart Rhythm Society (HRS) guidelines recommend continuing warfarin following catheter ablation whenever patients’ CHADS Score (CHADS₂) is ≥2, however there are no clear recommendations regarding patients after surgical ablation. Therefore, managing anticoagulation following surgical ablation that includes the removal/excision of the LA appendage, is challenging.

PURPOSE

The purpose of this study was to quantify the applicability of the CHADS₂ in determining anticoagulation strategies following surgical ablation procedures.

METHODS

- N=416 with surgical ablation procedures (364 pts: Cox-Maze III/IV procedure, 52 pts: Left atrial ablation only)
- A prospective, longitudinally designed study where CHADS₂ were calculated preoperatively for all patients and CHADS₂ were recalcualted if required during follow up
- 13.3% of patients presented with history of Stroke/TIA
- Follow up clinical information on rhythm, anticoagulation medication, major bleeding and embolic stroke/TIA was obtained every 3 months after the blanking period (blanking period defined as per HRS guidelines, i.e., the first 3 months after the surgical ablation)
- Rhythm and medication status for patients with thromboembolic or bleeding events was calculated at the time of the first event
- Independent samples t-tests were used to compare event groups on CHADS₂ and logistic regression was conducted to determine predictors of events

RESULTS

- Mean follow up of 31.32 (±17.3) months
- Embolic stroke/TIA events occurred in 4 patients (6.45 events per 1000 patient years) (Fig 1)
- 23 major bleeding events occurred in 17 patients (21.18 events per 1000 patient years) with 65% of the major bleedsers on warfarin at the time of event (Fig 2)
- There was no significant difference in the mean CHADS₂ between the Stroke/TIA event and non-event group (0.75 vs 1.47 respectively, p=0.21) (Fig 3)
- There was a significant difference in the CHADS₂ between the event blood group and the non-event group (2.25 vs 1.43 respectively, p=0.01) (Fig 3)

- Logistic regression models were used to determine whether age, hypertension (HTN), diabetes, Stroke/TIA, CHF, CHADS₂, rhythm and warfarin status were significant predictors of either event
- No simple or 2-way effects of these variables were predictive of Stroke/TIA
- The interaction term CHF/HTN (p<0.009), was the most significant predictor of a major bleed (Wald=6.91)

CONCLUSIONS

- A new risk algorithm for thromboembolic events should be developed for patients following surgical ablation.
- The number of thromboembolic events following surgical ablation is very low, unrelated to the CHADS score or rhythm status.
- This together with the higher rate of major bleeding events in the CHADS₂ ≥ 2 group raises questions regarding the applicability of the HRS guidelines for patients following surgical ablation and in particular after the Cox Maze III/IV procedure.
- A large scale randomized study is required to determine the risk/benefit of anticoagulation, CHADS score, thromboembolic events and bleeding for patient following surgical ablation especially when the LAA was excised and high success rate is expected.
The Implementation of a Comprehensive Clinical Protocol Improves Long Term Success Following Surgical Treatment of Atrial Fibrillation

Niv Ad MD, Linda L Henry PhD, Sharon L Hunt MBA, and Lori Stone BS
Inova Fairfax Hospital, Falls Church, VA
Cardiac Surgery Research, Inova Heart & Vascular Institute, Falls Church, VA

ABSTRACT

OBJECTIVE: The maze procedure performed for the treatment of atrial fibrillation (AF) as either stand-alone or combined with other surgery is becoming commonplace. Post discharge, patients are often being followed by their cardiologists who are unfamiliar with the nuances of the surgical procedure as well as the management of patients medical regimen and recurrence of post surgery arrhythmia. We sought to determine the effectiveness of a post discharge protocol designed to coordinate patient management between the cardio-surgeon and cardiologist.

METHODS: Our atrial fibrillation surgery center captures all patients having the maze procedure into a registry designed to provide longitudinal comprehensive clinical follow ups at 3, 6, 9, 12, 18, 24 months. The prospective follow up information collected includes: rhythm status, medications and interventions. Letters with the post discharge protocol as well as letters recommending further interventions required to comply with the protocol were sent to the cardiologists, at the follow up time points.

RESULTS: Currently, we have 324 patients (multiple surgeons) in our registry with over 1000 records and follow up rhythm status information. Independent of the clinical protocol, the return to SR was 80%, 84%, 84% and 84% at 6, 17, 24 and last follow up respectively (mean time to PII-24.1 months). Significantly improved results were documented for patients who were treated according to the protocol with SR rate of 90% vs 81%, 88% vs 76%, 90% vs 60% and 83% vs 73% at 6, 12, 24 and last follow up respectively (Figure 1). Failure to complete the protocol was documented in 39% of the patients in AF with the most common deviations being anti-arrhythmic drug treatment, any attempt of cardioversion and placement of patients on rate control regimen prematurely.

CONCLUSION: The success rate of the maze procedure is significantly better in patients that were treated according to the clinical protocol. Clinical coordination with the cardiologist is challenging but important; therefore, centers performing the surgical treatment for AF should make the effort to implement a comprehensive clinical algorithm to improve the outcome following the maze procedure.
ADVANCED LUNG DISEASE PROGRAM

INOVA HEART AND VASCULAR INSTITUTE
Prevalence of Unsuspected Coronary Artery Disease in Patients with Idiopathic Pulmonary Fibrosis

Abstract

There is no effective treatment for idiopathic pulmonary fibrosis (IPF). IPF can be associated with a variety of comorbidities, including coronary artery disease (CAD). Diagnosing and treating CAD at an early stage may improve mortality in IPF patients. We sought to determine the prevalence of known and previously unsuspected CAD in a cohort of IPF patients being evaluated for lung transplantation.

Methods: We performed a retrospective review of IPF and COPD (control) patients undergoing left heart catheterization (LHC) as part of their lung transplant evaluation. Patients were stratified into those with known and unknown CAD before evaluation. Major cardiac risk factors were assessed. Patients were categorized as having significant (≥50% stenosis), mild (<50% stenosis), or no CAD based on LHC results.

Results: 73 IPF patients and 66 COPD patients qualified for the analysis. 16% (12/73) of IPF patients and 19% (12/66) of COPD patients were known to have CAD before transplant evaluation. In patients with unknown CAD status, 59% (36/61) of IPF patients were found to have some form of CAD at LHC, compared to 31% (19/61) of COPD cases (p=0.003). 18% (11/61) of IPF patients were found to have significant CAD vs. 9% (5/54) of COPD patients (p=0.004). There were no significant differences in prevalence of cardiac risk factors between IPF and COPD, except for smoking history (COPD 97% vs. IPF 51%, p=0.001). Excluding transplant recipients, IPF patients with significant CAD had increased mortality (median survival 1.26 years from LHC) vs. mild or no CAD (p=0.02).

Conclusion: IPF has a significant association with CAD even after adjusting for CAD risk factors. There is a high prevalence of unsuspected CAD in IPF patients. Patients with both IPF and significant CAD have an increase in mortality.

Introduction

- IPF is a progressive, fibrotic disorder in which there is no effective treatment.
- IPF can be associated with a variety of comorbidities, including CAD.
- CAD may contribute to mortality in IPF patients.
- Diagnosing and treating CAD at an early stage may improve mortality in IPF patients.
- The goals of our study were to:
 - determine the prevalence of known and previously unsuspected CAD in IPF patients undergoing lung transplant evaluation.
 - establish whether IPF is an independent risk factor for CAD by controlling for common CAD risk factors.
 - assess the impact of CAD on the outcomes of patients with IPF.

Table 1. Demographics of IPF patients with prior unknown CAD status

<table>
<thead>
<tr>
<th>CAD Classification</th>
<th>None</th>
<th>Non-significant</th>
<th>Significant*</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean ± SD)</td>
<td>69.0 ± 6.5</td>
<td>59.2 ± 6.5</td>
<td>56.8 ± 6.2</td>
<td>0.016</td>
</tr>
<tr>
<td>Male (%)</td>
<td>15 (80)</td>
<td>19 (76)</td>
<td>10 (90)</td>
<td>0.139</td>
</tr>
<tr>
<td>Race</td>
<td>15 (80)</td>
<td>24 (90)</td>
<td>7 (68)</td>
<td>0.585</td>
</tr>
<tr>
<td>Body Mass Index, kg/m²</td>
<td>26.5 ± 5.1</td>
<td>29.5 ± 5.6</td>
<td>27.9 ± 4.5</td>
<td>0.554</td>
</tr>
<tr>
<td>FVC%</td>
<td>55.9 ± 13.2</td>
<td>60.1 ± 14.5</td>
<td>56.7 ± 19.9</td>
<td>0.167</td>
</tr>
<tr>
<td>FEV₁%</td>
<td>59.7 ± 14.1</td>
<td>67.4 ± 14.8</td>
<td>59.9 ± 14.4</td>
<td>0.120</td>
</tr>
<tr>
<td>DLCO%</td>
<td>29.8 ± 10.1</td>
<td>35.4 ± 17.4</td>
<td>35.1 ± 15.2</td>
<td>0.346</td>
</tr>
</tbody>
</table>

Methods

- Retrospective review of IPF patients who underwent LHC as part of pretransplant evaluation for the period September 2003 to July 2008.
- CAD patients, who were similarly evaluated during the same period, were used as a control cohort.
- Major cardiac risk factors, including smoking, hypertension, diabetes mellitus, hypercholesterolemia and family history of CAD were assessed.
- Patients were noted to have had a diagnosis of CAD prior to pretransplant evaluation.
- Based on LHC results, patients were categorized as having significant CAD (≥50% stenosis in one or more major coronary arteries), mild CAD (<50% stenosis), or no CAD.
- Kaplan-Meier curve for patients with significant CAD vs. mild or no CAD.
- Statistical analyses were conducted using GraphPad Prism and SAS.

Results

- 73 IPF patients and 66 COPD patients qualified for the analysis.
- 16% of IPF patients and 18% of COPD patients were known to have CAD prior to transplant evaluation.
- In patients with unknown CAD status, 59% of IPF patients were found to have some form of CAD at LHC, compared to 31% of COPD patients (p=0.003). Demographics of IPF patients with unknown coronary artery disease status prior to left heart catheterization are shown in Table 1 (N=61).
- 18% of IPF patients were found to have significant CAD compared to 9% of COPD patients (p=0.004).
- There were no significant differences in prevalence of cardiac risk factors between IPF and COPD patients except for smoking history (COPD 97% vs. IPF 51%, p=0.001).
- Excluding transplant recipients, IPF patients with significant CAD had increased mortality (median survival 1.26 years from LHC) vs. mild or no CAD (p=0.02) (Figure 1).

Conclusion

- We confirm the association of IPF with CAD by comparing IPF patients to a control cohort of COPD patients.
- A significant portion of the IPF subjects had unsuspected CAD at LHC.
- The increase prevalence of CAD in IPF was not explained by common cardiac risk factors.
- IPF therefore appears to be an independent risk factor for CAD.
- The presence of significant CAD in IPF patients is associated with an increase in mortality (even when treated).
- It is possible that significant undiagnosed and untreated CAD has an even greater impact in IPF outcomes.
- Awareness of this association and aggressive screening for CAD in IPF may help to improve outcomes in IPF patients.

References

Native Lung Complications in Single Lung Transplant Recipients and The Role of Native Lung Pneumonectomy

Christopher S. King MD1, Sandeep Khandhar MD2, Nelson Burton MD3, Oksana A Shlobin MD4, Shahzad Ahmad MD5, Scott D. Barnett PhD3 and Steven D. Nathan MD5

1Walter Reed Army Medical Center, Washington, DC
2Inova Fairfax Hospital, Cardiothoracic Surgery
3Inova Fairfax Hospital, Lung Transplantation Service

Background

- 17,000 lung transplants were performed between January 1995 and June 2006, over half of which were single lung transplants (SLT).
- 5-year survival with SLT is thought to be superior to LT (50% vs. 40%).
- Native lung complications (NLCs) may account for some of this apparent difference in survival.
- Despite the large number of SLTs and the propensity for NLC, the impact and management of these remains poorly defined.
- Native lung pneumonectomy (NLP) is one therapeutic option in select cases.

Purpose

- To examine the incidence and nature of NLC in a large cohort of SLT recipients.
- To determine the effect of NLC on survival of SLT recipients.
- Report on the role and results following NLP for NLC

Methods

- Retrospective cohort of all patients undergoing SLT at Inova Fairfax Hospital from January 1, 1995 through June 30, 2005.
- All patients developing significant NLCs were identified.
- Significant NLCs were defined as those resulting in hospitalization or death.
- Post-transplant and post-complication survival were the primary endpoints.
- A comparative analysis was performed on those patients with NLC treated with NLP.
- The decision to perform NLP was individualized based on each patient's unique clinical circumstance.

Results

- 180 patients underwent SLT.
- 25 (14%) developed NLCs.
- 11 required NLP.
- Indications for NLCs:
 - Pneumonitis (8/25)
 - Pneumonia (12/25)
 - Pulmonary embolism (12/25)
 - Necrotic lung (2/25)
 - Malignancy (1/25)

Characteristics of Native Lung Pneumonectomy Patients

- Kaplan-Meier survival: NLC vs No NLC
- Kaplan-Meier Plot of post-transplant survival: NLC with NLP vs No NLP
- Kaplan-Meier Plot of post-NLP survival: NLC with NLP vs No NLP

Impact on Survival

- Median time from transplant to major native lung complication was 1.28 years (0.04 to 5.1 years).
- Median survival for all SLT recipients during the study period was 5.1 years.
- Median post-transplant survival was lower in SLT recipients with significant NLCs (3.3 years vs. 5.3 years, p=0.004).
- No statistically significant difference in median survival between SLT recipients undergoing NLP compared to SLT recipients without native lung complications (4.3 years versus 5.1 years, p=0.478).
- Trend toward improved post-transplant survival in SLT recipients with NLCs treated with NLP versus those not undergoing NLP (4.3 years versus 2.4 years, p=0.128)

NLP Outcomes

- All survived to discharge.
- Median LOS post-NLP was 22.3 days (4-71 days).
- 4 of 11 (36%) experienced complications.
- Febrile, mechanical ventilation, Pneumonia, Atrial fibrillation

Limitations

- Small sample size precludes multivariate analysis comparing NLC and control groups.
- Single institution study.
- Caution: link between decreased survival and NLC cannot be established.
- Given retrospective nature, minor complications unlikely to be captured limiting study to multifocal NLC

Conclusions

- NLCs are common and associated with worsened post-transplant survival.
- NLC may explain some of the discrepancy in survival between SLT and LT.
- NLP is a reasonable therapeutic option for NLC with acceptable morbidity and mortality in select cases.
Prognosis Associated with Bronchiolitis Obliterans Syndrome Compared to Chronic Allograft Dysfunction Following Lung Transplantation

James P. Woodrow1, MD; Oksana A. Shlobin2, MD; Steven D. Nathan2, MD
1Pulmonary & Critical Care Medicine, Walter Reed Army Medical Center, Washington DC
2Lung Transplant Program, Inova Fairfax Hospital, Falls Church, VA

INTRODUCTION

- Lung transplantation may be complicated by chronic allograft dysfunction (CAD).
- One form of CAD is chronic allograft rejection which is manifest pathologically as Bronchiolitis Obliterans (BO).
- Bronchiolitis Obliterans Syndrome (BOS) is the physiologic surrogate which enables clinicians to make the presumptive diagnosis of chronic allograft rejection without subjecting patients to surgical lung biopsy.
- Therefore, BOS is a specific type of CAD that requires a permanent ≥ 20% decline in FEV1, without evidence of an underlying cause such as a concomitant restrictive/infiltrative process.
- BOS portends a poor prognosis but it is unknown whether the prognosis differs between patients with BOS and other forms of CAD.
- This study aims to compare these two groups with respect to mortality, lung function, and spirometric patterns.

METHODS

- Single center retrospective review of all lung transplant recipients over a 12 year period.
- Abstracted variables include FVC, FEV1, chest imaging, and all cause mortality.
- Spirometry data was collected from baseline, 3 & 6 months post transplant, and the last recorded pulmonary function test.
- CAD was broadly defined by a permanent ≥ 20% decline in post transplant baseline.
- First available chest imaging following CAD diagnosis was reviewed for the presence of allograft pleuroparenchymal infiltrates.
- Patients with radiographically clear chest imaging were labeled as BOS. All others were labeled CAD, Non-Specific (CAD-NS).
- Groups were compared with respect to mortality, decline in FEV1, and FVC decrement at diagnosis.

Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>BOS</th>
<th>CAD-NS</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>53.2</td>
<td>52.3</td>
<td>0.63</td>
</tr>
<tr>
<td>Male Gender</td>
<td>24 (42%)</td>
<td>21 (47%)</td>
<td>0.97</td>
</tr>
<tr>
<td>IPF</td>
<td>18 (35%)</td>
<td>19 (42%)</td>
<td>0.48</td>
</tr>
<tr>
<td>Sarcoid</td>
<td>4 (8%)</td>
<td>4 (9%)</td>
<td>0.85</td>
</tr>
<tr>
<td>COPD</td>
<td>18 (35%)</td>
<td>10 (22%)</td>
<td>0.15</td>
</tr>
<tr>
<td>Single Lung</td>
<td>41 (80%)</td>
<td>39 (87%)</td>
<td>0.41</td>
</tr>
<tr>
<td>Double Lung</td>
<td>10 (20%)</td>
<td>5 (11%)</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Survival

Results

- At baseline we found no difference between groups with respect to demographics, type of lung transplant, or underlying pulmonary disease.
- We found no difference in mortality or subsequent decline in FEV1 between patients with BOS and those with other non-specific forms of CAD.
- At the time of CAD diagnosis, the average decline in FVC from post transplant baseline was similar between groups.
- The proportion of patients with a ≥ 20% decline in FVC at diagnosis was also similar between groups.

Conclusion

- CAD which does not conform to the strict criteria of BOS is not uncommon in lung transplant recipients.
- The presence or absence of a radiographically defined concurrent restrictive process in lung transplant patients cannot be discerned by spirometric patterns.
- Radiographic infiltrates/ restriction may be a forme fruste of chronic allograft rejection or a distinct form of allograft injury.
- Whether pathologic BO accompanies radiographic infiltrates in patients with CAD remains to be determined.
- Establishing a rigorous diagnosis of BOS by ruling out a concurrent restrictive/infiltrative process does not appear to add any prognostic information to patients already meeting criteria for CAD.
NEUROSCIENCES PROGRAM

INOVA FAIRFAX HOSPITAL
Functional Pathway Mapping of Human Glioblastoma Multiforme (GBM) or WHO Grade IV Astrocytoma and Brain Metastases for Patient Tailored Therapy

M. KHALIL, J. Wulffkühle, H. Fillmore, J. Deng, L. Liotta, E. Petricoin, J. Watson, W. Broadus

1Department of Neurosciences, Inova Fairfax Hospital, Fairfax, VA; 2Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA; 3Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA; 4Virginia Commonwealth University, Inova Campus, Falls Church, VA

Abstract

Background: Cancer omics analysis of human glioblastoma multiformes (GBM) has suggested that this form of cancer is a protein pathway disease. Since predictive analysis cannot directly predict patient outcomes, analysis of protein pathway activation is required. The current cost of targeted translational therapeutic modulation, a functional reconstituting of the GBM signaling repertoire is critical, and yet largely unknown.

Methods: Twelve tumors were included in this study: 10 GBMs (9 primary, 1 recurrent) and three brain metastases (2 breast and 1 lung). Laser capture microdissection (LCM) was used to extract mRNA from fresh tumor sections using a laser capture microdissection (LCM). Protein pathway mapping was performed using Reverse Phase Protein Microarrays (RPPMA). For it to be a key signaling pathway protein, it was quantitatively measured at one step. Unsupervised and supervised analysis was used to explore pathway activation.

Results: Unsupervised hierarchical clustering of all tumors in the study set revealed highly protein-specific signaling patterns and also identified distinct pathway subtypes. The three metastatic tumors clustered separately and distinctly from the GBMs. The GBM specimen was clustered according to pathway activity. Statistical analysis demonstrated significant correlations between certain phosphatase subunits and activation levels within each tree. Phosphorylation of collagen (3S) was associated with shorter survival times in breast and renal carcinomas. The correlation between protein phosphorylation and gene expression was both positive and negative, depending on the overall survival.

Conclusions: This study represents the most comprehensive proteomic analysis of human GBM pathway mapping to date. Since certain pathway biomarkers are being targeted by current clinical trials, the ability to map pathway activation and identify critical pathway biomarkers can lead to targeted therapies that target these specific markers. The different signaling pathways are important in our understanding of gene-based survival as well as the overall survival.

Introduction

Current therapy directed to single targets while also being largely non-specific for distinct molecular perspectives. Efforts have focused on using gene transcript analysis and protein translation/mutations. Diagnostic high-throughput system to uncover drug targets and better patient selection for better response. However, since transcription expression is closely correlated with protein expression, and even less so with post-translational modifications, such as phosphorylation, which drive signal transduction. In the future, direct functional protein pathway information could be a more optimal biomarker repertoire for personalized therapy.

We used a direct approach to elucidate activated protein signaling networks that would allow for the development of functional signaling maps for CNS cancers, even at the level of the individual patient.

Cancer functional pathway mapping of acquired protein networks using Reverse Phase Protein Microarrays, could uncover new biomarkers that can be used for cancer stratification and developing molecularly targeted therapeutics.

Tumor Study Set

<table>
<thead>
<tr>
<th>Sample</th>
<th>Age</th>
<th>St. of Diag.</th>
<th>First</th>
<th>Last</th>
<th>Diagnosis</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>64</td>
<td>197</td>
<td>Long</td>
<td>Short</td>
<td>GBM</td>
<td>Endosurgery</td>
</tr>
<tr>
<td>M2</td>
<td>68</td>
<td>194</td>
<td>GBM</td>
<td>GBM</td>
<td>Endosurgery</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>57</td>
<td>197</td>
<td>GBM</td>
<td>GBM</td>
<td>Endosurgery</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>65</td>
<td>GBM</td>
<td>GBM</td>
<td>GBM</td>
<td>Endosurgery</td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>47</td>
<td>GBM</td>
<td>GBM</td>
<td>GBM</td>
<td>Endosurgery</td>
<td></td>
</tr>
<tr>
<td>M6</td>
<td>53</td>
<td>GBM</td>
<td>GBM</td>
<td>GBM</td>
<td>Endosurgery</td>
<td></td>
</tr>
<tr>
<td>M7</td>
<td>50</td>
<td>GBM</td>
<td>GBM</td>
<td>GBM</td>
<td>Endosurgery</td>
<td></td>
</tr>
<tr>
<td>M8</td>
<td>48</td>
<td>GBM</td>
<td>GBM</td>
<td>GBM</td>
<td>Endosurgery</td>
<td></td>
</tr>
<tr>
<td>M9</td>
<td>51</td>
<td>GBM</td>
<td>GBM</td>
<td>GBM</td>
<td>Endosurgery</td>
<td></td>
</tr>
<tr>
<td>M10</td>
<td>54</td>
<td>GBM</td>
<td>GBM</td>
<td>GBM</td>
<td>Endosurgery</td>
<td></td>
</tr>
<tr>
<td>M11</td>
<td>58</td>
<td>GBM</td>
<td>GBM</td>
<td>GBM</td>
<td>Endosurgery</td>
<td></td>
</tr>
<tr>
<td>M12</td>
<td>60</td>
<td>GBM</td>
<td>GBM</td>
<td>GBM</td>
<td>Endosurgery</td>
<td></td>
</tr>
</tbody>
</table>

Table showing sample identifiers and some clinical data of the patients

Methods

A patient’s biopsy sample is subjected to LCM to isolate cells of interest under direct microscopic visualization. The microdissected cells are lysed in a buffer and stained with antibodies for multiple pathway subunits analyzed using the Reverse Phase Protein Microarray (RPPMA) platform. Protein Array (RPPMA) analysis is performed.

Cellular lysates are prepared and spotted onto a microarray coated slide using a robotic machine. Arrays are incubated with a specific, validated antibody followed by an amplification and detection step. Spotted arrays are then analyzed for the presence of selected proteins using an automated detection system.

Discussion

Phosphorylation/activation status of key signaling proteins in GBM was determined by RPPMA. The results are shown in an activation map (Figure 1), which reveals clustering of EGFR, IGFRE, AKT, and tumor network (for GBMs), and TPR in pathway activation for one of the critical cancer proteins (STAT1).

The proteins are shown in an activation map (Figure 1), which reveals clustering of EGFR, IGFRE, AKT, and tumor network (for GBMs), and TPR in pathway activation for one of the critical cancer proteins (STAT1).

Results

Phosphorylation/activation status of key signaling proteins in GBM was determined by RPPMA. The results are shown in an activation map (Figure 1), which reveals clustering of EGFR, IGFRE, AKT, and tumor network (for GBMs), and TPR in pathway activation for one of the critical cancer proteins (STAT1).

The proteins are shown in an activation map (Figure 1), which reveals clustering of EGFR, IGFRE, AKT, and tumor network (for GBMs), and TPR in pathway activation for one of the critical cancer proteins (STAT1).

Conclusions

The identification of signaling activation maps from actual tumor biopsies is an important step in achieving patient-specific cancers. This study demonstrates the feasibility of the RPPMA, combined with LCM. To generate broad-scale pathway activation patterns for GBM and brain metastases.

Our work, while exploratory in nature, represents the only comprehensive proteome-wide protein pathway analysis performed on human GBMs and brain metastases.

Activation of EGFR, IGFRE, AKT, and tumor network (for GBMs) is highly correlated with survival.

Specific pathway activation patterns are highly correlated with survival.

References

Investigating the Fatigue Mechanism of Locked Plate Fixation of Proximal Humeral Fractures Using Acoustic Emission Technique

Jeff Schultman; Robert Hymes; Michael Weller; Mark Theiss; Jihui Li

1 Dept. of Orthopaedics, Inova Fairfax Hospital, Falls Church, VA
2 Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA

BACKGROUND

Proximal humeral fracture is a common bone fracture in elderly population. The fatigue properties of the bone-implant construct are critical to the success of the humeral fracture fixation. The fatigue-induced microcracks (fractures) can accumulate and propagate in bone and eventually coalesce into final failure. Previous research has mainly used interfragmentary rotation and displacement to investigate the fatigue mechanism of the fixation [1, 2], but none of them can detect the progression of bone crack activities that better indicate the procedure and causes of the fatigue failure.

OBJECTIVES

In this study we used acoustic emission (AE) technique [3] to monitor the microcrack activities in the entire fatigue procedure of the proximal humeral fractures fixed with the locked plate. We anticipated that AE technique can better reveal the failure mechanism of the humeral fracture fixation than the traditional mechanical tests.

MATERIAL & METHODS

- Ten humeri (5 matched pairs) were harvested. Proximal humeral fractures were fixed with a PERILOK® locked plate system (Smith & Nephew Inc., Memphis, TN).
- The specimens were subjected to cyclic compressive load of 500 N (±100 N) at 2 Hz for 15,000 cycles, or until gross failure when the actuator displacement reached 20 mm.
- 7 piezoelectric AE sensors (PAC, Princeton Junction, NJ) were glued onto the specimen to detect AE microcracks.
- Type I microcrack was an AE signal captured by four or more sensors, it was theoretically localizable in 3D. Type II microcrack (sensor number ≤ 4) was unpredictable.
- The locations, amplitude and numbers of Type I and II microcracks were presented to demonstrate damage progression and severity.

RESULTS

- Based on the failure cycles (Table 1), the specimens could be divided into three groups: the first included 3L and 3R, failed in less than 1,000 cycles. The second group had 1L, 2L, 1R, 2R and 4R, failed in less than 4,000 cycles. The third group had 4L, 5L and 5R, survived or failed around 15,000 cycles.
- Figure 2 indicated the displacements of actuator along fatigue of three samples from the three groups. The numbers of both Type I & II AE microcracks showed similar trend (Fig.3).
- The locations of Type I microcracks showed 4L, 1R had low amplitude microcracks accumulated around the middle and tip area of the screws until failure (Fig. 4A). Damage in both types was found jumping among screws in a spread pattern 2R, 3L, 4R, 5L, 5R had few microcracks that was randomly distributed at the middle area (Fig. 4B). 2L, 3L and 4L had high amplitude microcracks accumulated at the plate-screw interface area at first and lower amplitude microcracks at the middle and tip area (Fig. 4C and D).

Table 1. The results of mechanical and AE testing.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Cycle No.</th>
<th>Disp. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I No.9</td>
<td>3131</td>
<td>20</td>
</tr>
<tr>
<td>Type II No.20</td>
<td>1871</td>
<td>20</td>
</tr>
</tbody>
</table>

Note: Disp. = actuator displacement; Cycle No. = fatigue cycle number.

Fig.2. Actuator displacements of specimens 2L, 3R and 5R.

Fig.3. Number of Type I (red) and II (blue) microcracks of specimens 2L, 3R and 5R.

DISCUSSION

The distribution and progression of the Type I microcracks showed that the damage in some failed specimens started from the screw-plate interface area, which is thought to have occurred in the local cortical bone. This suggested that cortical bone may be the first barrier to the failure and despite the increased strength of locking plate constructs, the point of failure still starts from the cortical bone. During the final failure period most microcracks occurred at the middle and tip area of the screws, suggested that the screw-cancellous bone interfaces is the final barrier. Any measure that can strengthen the interfaces, such as increasing the screw length, may improve the fatigue performances. The limitation of this study was the calculated locations of Type I microcracks were not very accurate due to the small size of the specimen and high velocity of AE signals [3]. As a result we were unable to correlate a Type I microcrack to a specific screw and identify its role in the fatigue failure of the humeral fracture fixation.

REFERENCES

Biomechanical Comparison of Two Ludloff Metatarsal Osteotomy Fixations: Compression Screws vs. Locking Plate

BACKGROUND

Ludloff osteotomy fixation with compression screws has been widely used in the treatment of Hallux Valgus deformities [1, 2]. Generally six weeks of non-weight-bearing is required preoperatively to allow bone union. Besides the significant inconvenience due to non-weight-bearing, non-union or malunion and loss of correction, indicating screw fixation is not strong enough for early weight-bearing. This scenario is worse when patients have poor bone quality [3]. The locking plate is a relatively new fixation method and is believed to have better mechanical stability with a potential of early weight-bearing and less correlation with bone quality. However, there is no study proving its advantages over the screw fixation.

OBJECTIVES

In this study, we investigated the biomechanical properties of a locking plate fixation and a compression screw fixation. The hypothesis were: 1. locking plate fixation is more mechanically stable than 2. locking plate fixation correlates less to bone mineral density (BMD) than screw fixation.

MATERIAL & METHODS

- Eight pairs of metatarsals were harvested and scanned using dual x-ray absorptiometry (DEXA) to quantify BMD.
- The proximal metatarsals were potted into PVC tubes using resin, then the Ludloff osteotomy was created.
- One metatarsal from each pair was randomly selected and fixed with two compression screws (Synthes Inc.), while the contralateral metatarsal was fixed with a locking plate system (Merete Medical Inc.).
- The specimens were fixed onto a MTS machine with the metatarsal angled 15 degrees plantarward (Fig. 1). The distal end of each specimen was subjected to cyclic compressive loading (0 to 70 N) at 0.5 Hz for 1,000 cycles or until gross failure. The specimens that survived were further loaded until failure. Pearson’s tests were used to compare the mechanical stability (by mean of fatigue cycles) of the compression screws and the locking plate. Pearson’s tests were performed to examine the correlation between BMD and fatigue cycles of the two fixations.
- Four acoustic emission (AE) sensors were attached to the metatarsals to detect the elastic wave signals emitted from microcracks (small fractures) that occurred during the failure process. The time, number and linear location of the microcracks were determined to indicate the severity and progression of the fatigue damages in the fixations [4].

RESULTS

- Four locking plate specimens and two screw specimens survived 1,000 cycles of fatigue testing. The average failure cycles of locking plate was 744, that of screw specimens was 330 (Table 1). The mechanical stability of plate fixation was significantly higher (p<0.05).
- The mechanical stability of both fixation methods positively correlated with BMD (screw fixation: correlation coefficient 0.496, p value 0.042; plate fixation: correlation coefficient 0.688, p value 0.11, but not significant.
- The specimens fixed with screws failed catastrophically with dorsal angulation. The major reasons were loss of purchase of the distal screws and fracture of the dorsal cortex adjacent to the proximal screw. The failure mode of plate fixations was also dorsal angulation. The reason included loss of screw purchase and distal metatarsal displacement. The failure was not significant and recoverable when the load was removed.

CONCLUSION/DISSION

This study found that the Ludloff osteotomy fixed with a locking plate was much stronger than the traditional compression screw. The results, however, could not fully support the theory that the locking plate fixation is strong enough to eliminate a non-weight-bearing period. The author (SKH) however, has a clinical series of patients who were stabilized with the locking plate and allowed early weight-bearing. At a follow-up of approximately 6 months, no failures have been seen. Based on the results of both clinical and biomechanical studies we are confident that the locking plate fixation is sufficient for early weight-bearing and bone quality. However, patients with low BMD should be very cautious for early weight-bearing. AE results indicated that the failure of both the locking plate and screw fixations started from the loss of screw purchase; this information may be useful to improve implant designs.

REFERENCES

The Influences of Screw Penetration Depth and Local Bone Quality to the Fatigue Failure of Locked Plate Fixation of Proximal Humeral Fracture

Robert Hymes; Jeff Schulman; Michael Weiler; Mark Theiss; Jihui Li
Dept. of Orthopaedics, Inova Fairfax Hospital, Falls Church, VA;
Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA

BACKGROUND

The locked plate system that has rigid screw-plate interface is a relatively new method to fix displaced proximal humeral fractures. It was believed to have better initial stability and fixation strength over the traditional non-locked plate system in patients with poor bone quality [1]. However, previous biomechanical studies have had conflicting results on the relationship between bone mineral density (BMD) and the strength of the locked plate fixation [2, 3]. While BMD is an averaged bone quality of the entire area of the humeral head, the strength of the fixation may better be determined by the specific region of the bones penetrated by the screws.

OBJECTIVES

We developed a new method that uses quantitative CT (QCT) to determine the path of each screw, quantity penetration depths, and apparent density of local cortical and cancellous bones. We hypothesized that the mechanical strength of the locked plate fixation (by means of number of failure cycle) is influenced by the local bone quality (cortical density and cancellous density) and the screw penetration depth (cortical depth and cancellous depth).

MATERIAL & METHODS

- Ten humeri (5 matched pairs) were harvested and scanned using QCT with a calibration phantom containing K$_2$HPO$_4$.
- Proximal humeral fracture was created and fixed with PERILOO® locked plate (Smith & Nephew Inc.).
- The specimens were scanned using QCT post-operatively.
- Post op QCT images were registered onto pre-op QCT images using Mimics (Materialise Inc.) (Fig. 1).
- BMD (equivalent to K$_2$HPO$_4$) of local bone along each screw’s path was converted to apparent density (g/cm3) [3].
- Cortical depth (T_{cort}): sum of the penetration depth of all the screws in the same cortex; cancellous depth (T_{canc}): that in the cancellous bone. Cortical density (D_{cort}): averaged apparent density of all the screws of the local near cortex; cancellous density (D_{canc}): that of local cancellous bone.
- The specimens were tested on a MTS frame (Fig. 2) with cyclic compression load of 600 N (±100 N) at 2 Hz for 15,000 cycles, or stopped when the displacement of MTS actuator reaches 20 mm.
- A nonlinear regression model was proposed among T_{cort}, T_{canc}, D_{cort}, D_{canc} and the number of failure cycle N:

$$\ln N = a + b T_{cort} + c T_{canc} + d D_{cort} + e D_{canc} + f + g$$

RESULTS

- Only 2 specimens (5L and 5R) survived after 15,000 cycles of fatigue loading.
- Values for T_{cort}, T_{canc}, D_{cort} and N showed a large variation among specimens, but not for D_{canc} (Table 1).
- The equation was:

$$\ln N = -6.3094D_{canc} + 0.5157T_{cort} + 50.0852D_{canc} - 0.0001T_{cort} - 67.239$$

- The residual (σ^2) of the regression model was 0.0441.

CONCLUSIONS

This study demonstrated that the screw penetration depth in the cancellous bone (cortical density) can be a significant predictor of the success of the humeral fracture fixation surgery using locked plate system. Although physicians can not control the bone quality of a patient, this study provided a method by which physicians can estimate an implant’s performance based on projected screw paths and the patient’s local bone quality. The limitation of this study was that the usage of the sum of penetration depth and averaged apparent density of all screws may ignore the important role of certain screws that may contribute more to the failure than others. However, conducting such a study will need more specimens and significantly increase the costs.

REFERENCES

A health system based in Northern Virginia that consists of hospitals and other health services including emergency and urgent care centers, home care, nursing homes, mental health and blood donor services, and wellness classes. Governed by a voluntary board of community members, Inova’s mission is to improve the health of the diverse community we serve through excellence in patient care, education and research.

www.inova.org